Mild Cognitive Impairment Clinical Trial
Official title:
Brain Health & the Microbiome: A Proof-of-Concept Study in Patients With Mild Cognitive Impairment
The GW SMHS supports research in complementary and integrative approaches to treatment of sickness and disease and for health promotion. Sometimes, research may involve asking questions of patients, students, and health providers. In this study, individuals are being asked to participate in this study as either 1) a healthy volunteer, 2) a person with Mild Cognitive Impairment (MCI), or 3) a person with early Alzheimer's disease (eAD). We are trying to learn more about if the gut microbiome (the microbes that live in our digestive tract) of individuals with eAD, MCI, and healthy controls are altered following lifestyle changes. This research will provide the pilot data to begin to understand if these changes in the gut microbiome are beneficial to health and/or may slow or halt the progression of MCI or early Alzheimer's.
AD is, in a word, devastating. The massive psychological and physical trauma experienced by people with dementia and their loved ones is catastrophic and incapable of overestimation. It is incumbent upon researchers and clinicians to not only better understand the etiology of this disease, but also to translate this knowledge into actionable evidence to facilitate clinical care and prevention. The MGBA serves as a major etiological factor, in both cause and potentiation of the disease process, that possesses great potential for intervention. Interventions have the greatest opportunity for success earlier in the disease pathogenesis; therefore, MCI is an ideal target for intervention to prevent progression to AD. To effectively apply knowledge of this bidirectional relationship, a clearer picture of dysbiosis relevant to cognitive decline must be identified. The inclusion of HC, MCI, and early AD allows for the detection of a dose-response relationship, which is one of Bradford Hill's criteria for causality. 1 This means we will begin to investigate causality (using one of Hill's eight criteria) in addition to association in this proof-of-concept study. Most previous research has been done at too high a phylogenetic level to be truly informative in terms of interventions-in other words the data is too low resolution. The microbiome field was launched at the phylum/genus level for many reasons including the need to start somewhere in such a complex system. To put this in perspective, comparing a genus, such as Lactobacillus, would be akin to comparing a compilation or average of all species of the genus Homo: H. sapiens, H. habilis, H. errectus, H. heigelbergensis, H. neanderthalensis, and H. naledi. The diversity in Homo sapiens alone is staggering. How could we possibly think this is specific or high resolution enough to be clinically meaningful? Well, the research has shown that it is not. This coupled with advancements in technology (qPCR to 16S to shotgun metagenomics) has changed the landscape of the microbiome field. However, such advanced testing and understanding has yet to make it to the clinic and has largely not been applied to MCI or AD populations to date. The sum of the evidence suggests that restoration of the gut microbiome may serve to prevent, slow, or even reverse MCI/AD. Whether this entails the use of diet, supplements, medications, etc. or some combination thereof remains to be discovered. Before an intervention can be designed, a firm grasp of the specific alterations to the gut microbiome must be identified using higher resolution than simply genus alone-we must understand species level at least, ideally strain level in many cases. Once we understand the species-level alterations, therapeutic interventions may then be implemented to determine the effect size of said interventions. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT04513106 -
Promoting Advance Care Planning for Persons With Early-stage Dementia in the Community: a Feasibility Trial
|
N/A | |
Recruiting |
NCT06011681 -
The Rapid Diagnosis of MCI and Depression in Patients Ages 60 and Over
|
||
Recruiting |
NCT04522739 -
Spironolactone Safety in African Americans With Mild Cognitive Impairment and Early Alzheimer's Disease
|
Phase 4 | |
Active, not recruiting |
NCT03167840 -
Falls Prevention Through Physical And Cognitive Training in Mild Cognitive Impairment
|
N/A | |
Active, not recruiting |
NCT03676881 -
Longitudinal Validation of a Computerized Cognitive Battery (Cognigram) in the Diagnosis of Mild Cognitive Impairment and Alzheimer's Disease
|
||
Not yet recruiting |
NCT05041790 -
A Clinical Trial to Evaluate the Efficacy and Safety of Choline Alfoscerate Compared to Placebo in Patients With Degenerative Mild Cognitive Impairment
|
Phase 4 | |
Recruiting |
NCT04121156 -
High Definition Transcranial Direct Current Stimulation (HD-tDCS) in Patients With Mild Cognitive Impairment
|
N/A | |
Recruiting |
NCT03605381 -
MORbidity PRevalence Estimate In StrokE
|
||
Completed |
NCT02774083 -
Cognitive Training Using Feuerstein Instrumental Enrichment
|
N/A | |
Completed |
NCT01315639 -
New Biomarker for Alzheimer's Disease Diagnostic
|
N/A | |
Enrolling by invitation |
NCT06023446 -
Can (Optical Coherence Tomography) Pictures of the Retina Detect Alzheimer's Disease at Its Earliest Stages?
|
||
Completed |
NCT04567745 -
Automated Retinal Image Analysis System (EyeQuant) for Computation of Vascular Biomarkers
|
Phase 1 | |
Recruiting |
NCT05579236 -
Cortical Disarray Measurement in Mild Cognitive Impairment and Alzheimer's Disease
|
||
Completed |
NCT03583879 -
Using Gait Robotics to Improve Symptoms of Parkinson's Disease
|
N/A | |
Terminated |
NCT02503501 -
Intranasal Glulisine in Amnestic Mild Cognitive Impairment and Probable Mild Alzheimer's Disease
|
Phase 2 | |
Not yet recruiting |
NCT03740178 -
Multiple Dose Trial of MK-4334 in Participants With Alzheimer's Clinical Syndrome (MK-4334-005)
|
Phase 1 | |
Active, not recruiting |
NCT05204940 -
Longitudinal Observational Biomarker Study
|
||
Recruiting |
NCT02663531 -
Retinal Neuro-vascular Coupling in Patients With Neurodegenerative Disease
|
N/A | |
Recruiting |
NCT06150352 -
Sleep Apnea, Neurocognitive Decline and Brain Imaging in Patients With Subjective or Mild Cognitive Impairment
|
||
Recruiting |
NCT03507192 -
Effects of Muscle Relaxation on Cognitive Function in Patients With Mild Cognitive Impairment and Early Stage Dementia.
|
N/A |