Clinical Trials Logo

Clinical Trial Summary

The goal of this clinical trial is to learn about the ability of non-invasive brain stimulation during sleep to enhance people's deep sleep and its potential benefit on memory in people with mild cognitive impairment via home use sleep therapy device (SleepWISP) as well as learn about biomarkers associated with Alzheimer disease (AD). The clinical trial aims to answer the following main questions: 1. Whether the non-invasive transcranial electrical stimulation (TES) delivered by SleepWISP could provide short-term enhancement of deep sleep in a single night in the target population. 2. Whether TES delivered by SleepWISP could enhance deep sleep over multiple nights in the target population. 3. Whether enhance on deep sleep could improve memory performance in the target population. Participants will be asked to wear non-invasive and painless devices that record their brain activity during sleep along with an actigraphy watch that measures their movement throughout the day. In addition, blood samples will be collected from participants for up to five times during the study.


Clinical Trial Description

The purpose of the present research is to evaluate the ability of non-invasive transcranial electrical stimulation (TES) during slow-wave sleep (SWS) to enhance this stage of sleep for people with mild cognitive impairment (MCI). A previous study of the investigators have demonstrated, in a pilot study, that TES can acutely (i.e., immediately after TES) increase SWS duration in healthy people. In the present proposal, the investigators aim to replicate and extend the pilot findings in seniors with MCI. It is evidenced that decline in SWS duration with aging is associated for memory impairment in seniors, which also creates risk for Alzheimer disease (AD). At the same time as conducting TES to enhance SWS sleep in seniors with MCI, the investigators also aim to explore changes in biomarkers associated with AD, including Aβ40 and Aβ42. The investigators propose to conduct a sleep study using the Brain Electrophysiology Laboratory (BEL) company's Sleep WISP device (described in detail below). The Sleep WISP device is made up of three components: 1) 16-channel EEG amplifier with transcranial electrical stimulation (TES) capabilities, 2) a 16-channel EEG headband and 3) a small portable computer. All participants will be provided a Sleep WISP device. Participation in the study requires that participants use the Sleep WISP when they sleep. As participants sleep, their sleep EEG will be measured and automatically scored by the computer to determine stage of sleep. When SWS is detected, low-level current (.5-1 mA total) will be applied through pre-set electrodes (four on the forehead and four at base of back of head). These electrodes were used in our pilot study, showing that current applied through these electrodes during SWS is able to increase total SWS sleep duration. To evaluate the efficacy of the system, BEL will use a small, exploratory pilot sample of 10 employees and staff members to run the testing in Eugene, Oregon. After the 10 pilot subjects at BEL with employees and staff and prior to the main study, the protocol and system will be tested with older adults at each of the Wake Forest area (Winston-Salem, North Carolina) and Portland-Eugene surrounding area (Oregon) as pilot sub studies for device usability feedback with seniors. These pilot subjects will only take part in the acute portion of the parent sleep study, where the first night is acclimation (no TES), the second night is TES or sham, and then a week later, they get TES or sham, for a total of three nights for the pilot studies. This pilot study does not include the PAVL memory test. The main study is a six-week study, and it is divided into two phases. Phase I involves up to nine sleep sessions. The first session is a baseline/acclimation session. In the first session, participants will use the Sleep WISP device to passively record sleep EEG (no TES) as baseline. The second session is performed the night following the baseline session with randomized experiment condition (either placebo or active TES session). Participants will be blinded for what condition they receive. The final session will occur one week after the second session to receive the opposite experiment condition to the second session. In the week between the second and final sessions, participants will be asked to wear the device at night to record their EEG. During this period, there will be no TES stimulation. Phase II of the study starts the night after the final session of Phase I. To participate in Phase II, all participants must successfully complete Phase I. In Phase II, all sessions are active (TES) sessions. Participants will be asked to use the Sleep WISP every night for up to four weeks, starting on Day 10. In Phase II, unlike Phase I, participants are allowed (but encouraged not) to miss nights of sleep using the Sleep WISP. Participants will also be asked to wear actigraphy watch that measures sleep parameters based on movement each night in Phase II. A trained phlebotomist will collect blood sample from participants in the morning of Day 10, and at the end of each week in Phase II for a total of five blood draws. The samples will be treated with an anticoagulant, plasma isolated and stored at -80°C until Aβ detection. In both Phases I and II, prior to sleep, participants will be presented with a paired-associate verbal learning (PAVL) task. Participants will be required to learn the list of words, to a pre-specified performance criterion. After waking from sleep in the morning, participants will be tested with the same list, to assess retention of the previously learned materials. In our previous TES study of SWS enhancement, the investigators were able to show that SWS can be enhanced immediately (short-term/acute) after TES. The study was performed in the BEL sleep lab. Phase I of the proposed new study will extend the previous pilot study results by using Sleep WISP device as participants with MCI sleep at home, which will allow us to support home monitoring and acute treatment of disordered sleep for adults with MCI. Phase II will assess whether SWS modulation over multiple nights will produce cumulative enhancement of SWS in adults with MCI. In both study phases, the investigators will also evaluate the cognitive consequences, specifically declarative memory, of enhancing SWS. Aim 1: Phase I aims to replicate our previous study (acute/short-term enhancement of SWS) in seniors with MCI with the sleep WISP device. Aim 2: Phase II aims to assess the ability of TES to cumulatively enhance SWS over multiple session in seniors with MCI comparing with healthy control. Aim 3: Evaluate SWS quality on a declarative memory task in older adults with MCI. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT05771844
Study type Interventional
Source Brain Electrophysiology Laboratory Company
Contact Don M Tucker, PhD
Phone 541-653-8266
Email don.tucker@bel.company
Status Recruiting
Phase N/A
Start date February 8, 2023
Completion date September 2025

See also
  Status Clinical Trial Phase
Completed NCT04513106 - Promoting Advance Care Planning for Persons With Early-stage Dementia in the Community: a Feasibility Trial N/A
Recruiting NCT06011681 - The Rapid Diagnosis of MCI and Depression in Patients Ages 60 and Over
Recruiting NCT04522739 - Spironolactone Safety in African Americans With Mild Cognitive Impairment and Early Alzheimer's Disease Phase 4
Active, not recruiting NCT03167840 - Falls Prevention Through Physical And Cognitive Training in Mild Cognitive Impairment N/A
Active, not recruiting NCT03676881 - Longitudinal Validation of a Computerized Cognitive Battery (Cognigram) in the Diagnosis of Mild Cognitive Impairment and Alzheimer's Disease
Not yet recruiting NCT05041790 - A Clinical Trial to Evaluate the Efficacy and Safety of Choline Alfoscerate Compared to Placebo in Patients With Degenerative Mild Cognitive Impairment Phase 4
Recruiting NCT04121156 - High Definition Transcranial Direct Current Stimulation (HD-tDCS) in Patients With Mild Cognitive Impairment N/A
Recruiting NCT03605381 - MORbidity PRevalence Estimate In StrokE
Completed NCT02774083 - Cognitive Training Using Feuerstein Instrumental Enrichment N/A
Completed NCT01315639 - New Biomarker for Alzheimer's Disease Diagnostic N/A
Enrolling by invitation NCT06023446 - Can (Optical Coherence Tomography) Pictures of the Retina Detect Alzheimer's Disease at Its Earliest Stages?
Completed NCT04567745 - Automated Retinal Image Analysis System (EyeQuant) for Computation of Vascular Biomarkers Phase 1
Recruiting NCT05579236 - Cortical Disarray Measurement in Mild Cognitive Impairment and Alzheimer's Disease
Completed NCT03583879 - Using Gait Robotics to Improve Symptoms of Parkinson's Disease N/A
Terminated NCT02503501 - Intranasal Glulisine in Amnestic Mild Cognitive Impairment and Probable Mild Alzheimer's Disease Phase 2
Not yet recruiting NCT03740178 - Multiple Dose Trial of MK-4334 in Participants With Alzheimer's Clinical Syndrome (MK-4334-005) Phase 1
Active, not recruiting NCT05204940 - Longitudinal Observational Biomarker Study
Recruiting NCT02663531 - Retinal Neuro-vascular Coupling in Patients With Neurodegenerative Disease N/A
Recruiting NCT06150352 - Sleep Apnea, Neurocognitive Decline and Brain Imaging in Patients With Subjective or Mild Cognitive Impairment
Recruiting NCT03507192 - Effects of Muscle Relaxation on Cognitive Function in Patients With Mild Cognitive Impairment and Early Stage Dementia. N/A