Clinical Trials Logo

Clinical Trial Summary

This project seeks to identify neural changes that occur in adults with mild cognitive impairment (MCI) after engagement in computerized cognitive training. In addition, this project aims to identify physiological factors that may bolster effects of the training on cognitive function. Individuals with MCI are at high risk for Alzheimer's disease (AD). Understanding how cognitive training protects cognitive function in MCI can contribute to development of effective interventions to slow progression to AD in individuals at risk, thereby reducing the significant morbidity and health care costs associated with AD.


Clinical Trial Description

Mild Cognitive Impairment (MCI), especially amnestic type, is considered a symptomatic pre-Alzheimer's disease (AD) phase, and is prevalent in the aging population. Vision-based speed of processing (VSOP) cognitive training is one of the most widely applied behavioral interventions in community-dwelling older Americans free of AD, holding potential to slow cognitive decline. Its particular relevance to MCI is supported by converging evidence from our preliminary studies, including a recently completed pilot intervention study. However, we know little about the mechanisms underlying the benefits of VSOP training, limiting our ability to further exploit VSOP or other forms of cognitive training. In particular, we do not know if and how the effects of VSOP training on cognitive performance are mediated by neuroplasticity-related brain changes. Since recent evidence suggests that neuroplasticity is inducible throughout adult life, even in MCI, it is possible that VSOP training promotes neuroplasticity and slows neurodegeneration. In this early stage and new investigator application, we will focus on assessing whether and how VSOP training, relative to mental leisure activities (MLA), alters cognitive and neural functions in older adults with MCI, up to 6 months after training. The study will enroll and randomize 84 participants with amnestic MCI to VSOP training or MLA control groups. Three specific research aims are to (1) determine whether VSOP training improves processing speed and attention that are associated with changes of brain structural and functional connectivity; (2) test a novel neurophysiological pathway of VSOP training effect on brain structure and function; (3) examine the effect of VSOP training on untrained cognitive and functional domains and the role of neurophysiological changes underlying possible transfer effects. By examining multiple neural and novel physiological mechanisms linking a promising VSOP training intervention to improvements in cognitive performance, this application seeks to challenge and shift current research on cognitive training that merely examines training effects on cognitive outcomes. Discovery of neural, and physiological-related mechanisms in VSOP training will have important implications beyond this particular intervention. Findings from recent behavioral studies (e.g., cognitive intervention, physical exercise, nutrition, and bio-feedback intervention) suggest that for cognitive decline to be mitigated in individuals at risk for AD, it will be necessary for interventions to target the neural and peripheral physiological pathways that are susceptible to AD neuropathology. Confirmation of the study hypotheses could support immediate translation to clinical practices by demonstrating the efficacy, sustainability, and generalizability of cognitive training. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT02559063
Study type Interventional
Source University of Rochester
Contact
Status Completed
Phase N/A
Start date January 12, 2016
Completion date July 1, 2019

See also
  Status Clinical Trial Phase
Completed NCT04513106 - Promoting Advance Care Planning for Persons With Early-stage Dementia in the Community: a Feasibility Trial N/A
Recruiting NCT06011681 - The Rapid Diagnosis of MCI and Depression in Patients Ages 60 and Over
Recruiting NCT04522739 - Spironolactone Safety in African Americans With Mild Cognitive Impairment and Early Alzheimer's Disease Phase 4
Active, not recruiting NCT03167840 - Falls Prevention Through Physical And Cognitive Training in Mild Cognitive Impairment N/A
Active, not recruiting NCT03676881 - Longitudinal Validation of a Computerized Cognitive Battery (Cognigram) in the Diagnosis of Mild Cognitive Impairment and Alzheimer's Disease
Not yet recruiting NCT05041790 - A Clinical Trial to Evaluate the Efficacy and Safety of Choline Alfoscerate Compared to Placebo in Patients With Degenerative Mild Cognitive Impairment Phase 4
Recruiting NCT04121156 - High Definition Transcranial Direct Current Stimulation (HD-tDCS) in Patients With Mild Cognitive Impairment N/A
Recruiting NCT03605381 - MORbidity PRevalence Estimate In StrokE
Completed NCT02774083 - Cognitive Training Using Feuerstein Instrumental Enrichment N/A
Completed NCT01315639 - New Biomarker for Alzheimer's Disease Diagnostic N/A
Enrolling by invitation NCT06023446 - Can (Optical Coherence Tomography) Pictures of the Retina Detect Alzheimer's Disease at Its Earliest Stages?
Completed NCT04567745 - Automated Retinal Image Analysis System (EyeQuant) for Computation of Vascular Biomarkers Phase 1
Recruiting NCT05579236 - Cortical Disarray Measurement in Mild Cognitive Impairment and Alzheimer's Disease
Completed NCT03583879 - Using Gait Robotics to Improve Symptoms of Parkinson's Disease N/A
Terminated NCT02503501 - Intranasal Glulisine in Amnestic Mild Cognitive Impairment and Probable Mild Alzheimer's Disease Phase 2
Not yet recruiting NCT03740178 - Multiple Dose Trial of MK-4334 in Participants With Alzheimer's Clinical Syndrome (MK-4334-005) Phase 1
Active, not recruiting NCT05204940 - Longitudinal Observational Biomarker Study
Recruiting NCT02663531 - Retinal Neuro-vascular Coupling in Patients With Neurodegenerative Disease N/A
Recruiting NCT06150352 - Sleep Apnea, Neurocognitive Decline and Brain Imaging in Patients With Subjective or Mild Cognitive Impairment
Recruiting NCT03507192 - Effects of Muscle Relaxation on Cognitive Function in Patients With Mild Cognitive Impairment and Early Stage Dementia. N/A