Clinical Trials Logo

Medulloblastoma clinical trials

View clinical trials related to Medulloblastoma.

Filter by:

NCT ID: NCT03213665 Active, not recruiting - Clinical trials for Advanced Malignant Solid Neoplasm

Tazemetostat in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With EZH2, SMARCB1, or SMARCA4 Gene Mutations (A Pediatric MATCH Treatment Trial)

Start date: November 13, 2017
Phase: Phase 2
Study type: Interventional

This phase II Pediatric MATCH trial studies how well tazemetostat works in treating patients with brain tumors, solid tumors, non-Hodgkin lymphoma, or histiocytic disorders that have come back (relapsed) or do not respond to treatment (refractory) and have EZH2, SMARCB1, or SMARCA4 gene mutations. Tazemetostat may stop the growth of tumor cells by blocking EZH2 and its relation to some of the pathways needed for cell proliferation.

NCT ID: NCT03210714 Active, not recruiting - Clinical trials for Advanced Malignant Solid Neoplasm

Erdafitinib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With FGFR Mutations (A Pediatric MATCH Treatment Trial)

Start date: June 5, 2018
Phase: Phase 2
Study type: Interventional

This phase II Pediatric MATCH trial studies how well erdafitinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with FGFR mutations that have spread to other places in the body and have come back or do not respond to treatment. Erdafitinib may stop the growth of cancer cells with FGFR mutations by blocking some of the enzymes needed for cell growth.

NCT ID: NCT02875314 Active, not recruiting - Medulloblastoma Clinical Trials

HeadStart4: Newly Diagnosed Children (<10 y/o) With Medulloblastoma and Other CNS Embryonal Tumors

Start date: September 2015
Phase: Phase 4
Study type: Interventional

This is a prospective randomized clinical trial, to determine whether dose-intensive tandem Consolidation, in a randomized comparison with single cycle Consolidation, provides an event-free survival (EFS) and overall survival (OS). The study population will be high-risk patients (non-Wnt and non-Shh sub-groups) with medulloblastoma, and for all patients with central nervous system (CNS) embryonal tumors completing "Head Start 4" Induction. This study will further determine whether the additional labor intensity (duration of hospitalizations and short-term and long-term morbidities) associated with the tandem treatment is justified by the improvement in outcome. It is expected that the tandem (3 cycles) Consolidation regimen will produce a superior outcome compared to the single cycle Consolidation, given the substantially higher dose intensity of the tandem regimen, without significant addition of either short-term or long-term morbidities.

NCT ID: NCT02724579 Active, not recruiting - Medulloblastoma Clinical Trials

Reduced Craniospinal Radiation Therapy and Chemotherapy in Treating Younger Patients With Newly Diagnosed WNT-Driven Medulloblastoma

Start date: November 17, 2017
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well reduced doses of radiation therapy to the brain and spine (craniospinal) and chemotherapy work in treating patients with newly diagnosed type of brain tumor called WNT)/Wingless (WNT)-driven medulloblastoma. Recent studies using chemotherapy and radiation therapy have been shown to be effective in treating patients with WNT-driven medulloblastoma. However, there is a concern about the late side effects of treatment, such as learning difficulties, lower amounts of hormones, or other problems in performing daily activities. Radiotherapy uses high-energy radiation from x-rays to kill cancer cells and shrink tumors. Drugs used in chemotherapy, such as cisplatin, vincristine sulfate, cyclophosphamide and lomustine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving reduced craniospinal radiation therapy and chemotherapy may kill tumor cells and may also reduce the late side effects of treatment.

NCT ID: NCT02441088 Active, not recruiting - Neuroblastoma Clinical Trials

Theranostics: 68GaDOTATOC and 90YDOTATOC

PRRT
Start date: May 2015
Phase: Phase 2
Study type: Interventional

Participants in this research study have tumors that express somatostatin receptors such as neuroendocrine tumors, medulloblastoma, meningioma, and neuroblastoma. Approximately 64 people will participate in this study conducted at the University of Iowa.

NCT ID: NCT02066220 Active, not recruiting - Brain Tumors Clinical Trials

International Society of Paediatric Oncology (SIOP) PNET 5 Medulloblastoma

Start date: June 2014
Phase: Phase 2/Phase 3
Study type: Interventional

The study PNET 5 MB has been designed for children with medulloblastoma of standard risk (according to the risk-group definitions which have been used so far; e.g. in PNET 4). With the advent of biological parameters for stratification into clinical medulloblastoma trials, the ß-catenin status will be the only criterion according to which study patients will be assigned to either treatment arm PNET 5 MB - LR or to PNET 5 MB - SR, respectively. The initial diagnostic assessments (imaging, staging, histology, and tumor biology) required for study entry are the same for both treatment arms. With the amendment for version 12 of the protocol, patients who have a WNT-activated medulloblastoma with clinically high-risk features can be included in the PNET 5 MB WNT-HR study, and patients with a high-risk SHH medulloblastoma with TP53 mutation (both somatic or germline including mosaicism) can be included in the PNET5 MB SHH-TP53 study. Data on patients with pathogenic germline alteration or cancer predisposition syndrome, who cannot be included in any prospective trial due to unavailability or due to physician or family decision, can be documented within the observational PNET 5 MB registry.

NCT ID: NCT01878617 Active, not recruiting - Medulloblastoma Clinical Trials

A Clinical and Molecular Risk-Directed Therapy for Newly Diagnosed Medulloblastoma

Start date: June 23, 2013
Phase: Phase 2
Study type: Interventional

Historically, medulloblastoma treatment has been determined by the amount of leftover disease present after surgery, also known as clinical risk (standard vs. high risk). Recent studies have shown that medulloblastoma is made up of distinct molecular subgroups which respond differently to treatment. This suggests that clinical risk alone is not adequate to identify actual risk of recurrence. In order to address this, we will stratify medulloblastoma treatment in this phase II clinical trial based on both clinical risk (low, standard, intermediate, or high risk) and molecular subtype (WNT, SHH, or Non-WNT Non-SHH). This stratified clinical and molecular treatment approach will be used to evaluate the following: - To find out if participants with low-risk WNT tumors can be treated with a lower dose of radiation to the brain and spine, and a lower dose of the chemotherapy drug cyclophosphamide while still achieving the same survival rate as past St. Jude studies with fewer side effects. - To find out if adding targeted chemotherapy after standard chemotherapy will benefit participants with SHH positive tumors. - To find out if adding new chemotherapy agents to the standard chemotherapy will improve the outcome for intermediate and high risk Non-WNT Non-SHH tumors. - To define the cure rate for standard risk Non-WNT Non-SHH tumors treated with reduced dose cyclophosphamide and compare this to participants from the past St. Jude study. All participants on this study will have surgery to remove as much of the primary tumor as safely possible, radiation therapy, and chemotherapy. The amount of radiation therapy and type of chemotherapy received will be determined by the participant's treatment stratum. Treatment stratum assignment will be based on the tumor's molecular subgroup assignment and clinical risk. The participant will be assigned to one of three medulloblastoma subgroups determined by analysis of the tumor tissue for tumor biomarkers: - WNT (Strata W): positive for WNT biomarkers - SHH (Strata S): positive for SHH biomarkers - Non-WNT Non-SHH, Failed, or Indeterminate (Strata N): negative for WNT and SHH biomarkers or results are indeterminable Participants will then be assigned to a clinical risk group (low, standard, intermediate, or high) based on assessment of: - How much tumor is left after surgery - If the cancer has spread to other sites outside the brain [i.e., to the spinal cord or within the fluid surrounding the spinal cord, called cerebrospinal fluid (CSF)] - The appearance of the tumor cells under the microscope - Whether or not there are chromosomal abnormalities in the tumor, and if present, what type (also called cytogenetics analysis)

NCT ID: NCT01326104 Active, not recruiting - Medulloblastoma Clinical Trials

Vaccine Immunotherapy for Recurrent Medulloblastoma and Primitive Neuroectodermal Tumor

Re-MATCH
Start date: September 7, 2010
Phase: Phase 2
Study type: Interventional

Immunotherapy is a specific approach to treating cancer that has shown promise in adult patients for the treatment of melanoma, malignant brain tumors, and other cancers. The study investigators will use the experience they have gained from these studies to try to improve the outcome for children affected by a recurrent brain tumor. Approximately 35 patients with first recurrence of medulloblastoma (reMB)/supratentorial primitive neuroectodermal tumors (PNETs) will be treated with tumor-specific immune cells and dendritic cell vaccines to see what impact they have on the tumor.

NCT ID: NCT01063114 Active, not recruiting - Brain Tumor Clinical Trials

Proton Beam Radiotherapy for Medulloblastoma and Pineoblastoma

Start date: April 2010
Phase: N/A
Study type: Interventional

There are two types of external radiation treatments (proton beam and photon beam). As part of the participant's treatment, they will receive radiation to the entire central nervous system (CNS); this is known as craniospinal irradiation (CSI). In the past, photon radiation therapy has been used for CSI. In this study we will be examining the effects of proton beam radiation therapy. Studies have suggested that this kind of radiation can cause less damage to normal tissue than photon radiation therapy. The physical characteristics of proton beam radiation let the doctor safely deliver the amount of radiation delivered to the tumor that is normally delivered through standard therapy but spare more normal tissue in the process.

NCT ID: NCT00983398 Active, not recruiting - Medulloblastoma Clinical Trials

Melphalan, Carboplatin, Mannitol, and Sodium Thiosulfate in Treating Patients With Recurrent or Progressive CNS Embryonal or Germ Cell Tumors

Start date: July 9, 2009
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies the side effects and best dose of melphalan when given together with carboplatin, mannitol, and sodium thiosulfate, and to see how well they work in treating patients with central nervous system (CNS) embryonal or germ cell tumors that is growing, spreading, or getting worse (progressive) or has come back (recurrent). Drugs used in chemotherapy, such as melphalan and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Osmotic blood-brain barrier disruption (BBBD) uses mannitol to open the blood vessels around the brain and allow cancer-killing substances to be carried directly to the brain. Sodium thiosulfate may help lessen or prevent hearing loss and toxicities in patients undergoing chemotherapy with carboplatin and BBBD. Giving melphalan together with carboplatin, mannitol, and sodium thiosulfate may be an effective treatment for recurrent or progressive CNS embryonal or germ cell tumors.