Clinical Trials Logo

Clinical Trial Summary

It is critical to maintain a relatively normal inspiratory effort during pressure support ventilation (PSV), the support level should be adjusted to match the patient's inspiratory effort. The inspiratory muscle pressure index (PMI) can reflect the elastic work of the respiratory system at the end of inspiration and has a significant correlation with inspiratory effort, and it has the outgoing advantages of being non-invasive and easy to obtain. Previous studies on PMI were based on physiological research and experimental conditions (PMIref), which require special pressure monitoring devices and software to collect and measure airway pressure. If PMI is going to be used in clinical practice, it is necessary to find a simple measurement method of PMI to replace PMIref. Most ventilators have airway pressure monitoring and end-inspiratory holding functions, and PMI can be measured by freezing the ventilator screen (PMIvent). The overall aim of this study was to determine PMIvent's clinical feasibility and validity for accessing inspiratory effort during PSV.


Clinical Trial Description

The intensity of effort the respiratory system produces after receiving respiratory center drive is referred to as inspiratory effort. It is critical to maintain a relatively normal inspiratory effort during assist mechanical ventilation. During pressure support ventilation (PSV), the support level should be adjusted to match the patient's inspiratory effort. The inspiratory muscle pressure index (PMI) is an indicator based on airway pressure (Paw), defined as the difference between plateau pressure (Pplat) and airway peak pressure (Ppeak). PMI can reflect the elastic work of the respiratory system at the end of inspiration and has a significant correlation with end-inspiratory muscle pressure (Pmus,ei) and esophageal pressure time product per breath (PTPes). Current studies have shown that PMI is an accurate indicator of inspiratory effort, and it has the outgoing advantages of being non-invasive and easy to obtain. Previous studies on PMI were based on physiological research and experimental conditions, which require special pressure monitoring devices and software to collect and measure airway pressure. In this investigation, the standard measurement of PMI (PMIref) was the difference between Pplat at one cardiac cycle (0.5-1.2s) following end-inspiratory occlusion (EIO) and Ppeak at EIO. This measurement method can avoid the interference of cardiac artifacts on Paw to the greatest extent. If PMI is going to be used in clinical practice, it is necessary to find a simple measurement method of PMI to replace PMIref. Most ventilators have airway pressure monitoring and end-inspiratory holding functions, and PMI can be measured by freezing the ventilator screen (PMIvent). When obtaining PMIvent, the operator could only select a relatively stationary Pplat by visual inspection, and the cardiac artifacts could not be avoided. Several additional issues need to be addressed when PMI is going to be used in clinical practice to monitor inspiratory effort in ventilated patients. Is PMI easy to obtain? Can PMIvent replace PMIref? What is the effect of different ventilators on PMIvent measurement? What is the relationship between PMIvent and inspiratory effort? Can PMIvent detect high/low effort? Therefore, the aims of this study were to explore the clinical acquisition rate of PMI, the agreement between PMIvent and PMIref, and the predicted value of PMIvent for inspiratory effort. The overall aim was to determine PMI's clinical feasibility and validity for accessing inspiratory effort during PSV. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT05950893
Study type Interventional
Source Capital Medical University
Contact Jian-Xin Zhou, MD
Phone 8610 59978019
Email zhoujx.cn@icloud.com
Status Recruiting
Phase N/A
Start date March 25, 2023
Completion date July 25, 2023

See also
  Status Clinical Trial Phase
Completed NCT05921656 - Construction and Evaluation of Airway Leakage Risk Model of Patients With Endotracheal Tube
Recruiting NCT03941002 - Continuous Evaluation of Diaphragm Function N/A
Withdrawn NCT04288076 - The Brain and Lung Interaction (BALI) Study N/A
Completed NCT03031860 - Semi-quantitative Cough Strength Score (SCSS) N/A
Completed NCT02312869 - Local Assessment of Management of Burn Patients N/A
Completed NCT02545621 - A Role for RAGE/TXNIP/Inflammasome Axis in Alveolar Macrophage Activation During ARDS (RIAMA): a Proof-of-concept Clinical Study
Completed NCT01885442 - TryCYCLE: A Pilot Study of Early In-bed Leg Cycle Ergometry in Mechanically Ventilated Patients N/A
Completed NCT01204281 - Proportional Assist Ventilation (PAV) in Early Stage of Critically Ill Patients Phase 4
Terminated NCT01059929 - Dexmedetomidine Versus Propofol in the Medical Intensive Care Unit (MICU) Phase 4
Completed NCT00824239 - Intermittent Sedation Versus Daily Interruption of Sedation in Mechanically Ventilated Patients Phase 3
Completed NCT00529347 - Mechanical Ventilation Controlled by the Electrical Activity of the Patient's Diaphragm - Effects of Changes in Ventilator Parameters on Breathing Pattern Phase 1
Unknown status NCT00260676 - Protective Ventilatory Strategy in Potential Organ Donors Phase 3
Terminated NCT00205517 - Sedation and Psychopharmacology in Critical Care N/A
Completed NCT03281785 - Ultrasound of Diaphragmatic Musculature in Mechanically Ventilated Patients. N/A
Recruiting NCT04110613 - RCT: Early Feeding After PEG Placement N/A
Completed NCT04410783 - The Emergency Department Sedation Pilot Trial N/A
Recruiting NCT04821453 - NAVA vs. CMV Crossover in Severe BPD N/A
Completed NCT03930147 - Ventilation With ASV Mode in Children N/A
Recruiting NCT05029167 - REstrictive Versus LIberal Oxygen Strategy and Its Effect on Pulmonary Hypertension After Out-of-hospital Cardiac Arrest (RELIEPH-study) N/A
Recruiting NCT04849039 - Lung Microbiota and VAP Development (PULMIVAP)