Mechanical Ventilation Clinical Trial
Official title:
Validation of the Relationship Between Oxygenation Parameters and the Oxygen Reserve Index (ORI™), in Mechanically Ventilated ICU Patients: An Exploratory Pathophysiology Study
The ORI™ or Oxygen Reserve Index (Masimo, Irvine, CA, USA) is a non-invasive monitoring system for measuring oxygen reserve. It is a digital sensor (almost identical to the SpO2 sensor) which allows an analysis of the absorption of arterial, venous and capillary components. The measured index, unitless, ranges from 0.00 to 1.00 for moderate hyperoxia levels: from 100 to 200 mmHg. It can alert the clinician to a drop in oxygen stores via the drop in SvO2 before a drop in SpO2 is observed. We propose to carry out a study to elucidate correlation between ORI™ and PaO2.
Pulse oximetry or SpO2 is the standard and mandatory monitoring of oxygenation during mechanical ventilation of intensive care and operating theatre patients. Its use is based on the difference in infrared and red light absorptions of oxyhaemoglobin and reduced haemoglobin. The calculation of the absorption percentage takes into account the pulsatility of the signal, reflecting the arterial component, while eliminating the continuous signal, reflecting the venous component. It is then considered that SpO2 is a reflection of SaO2, or arterial oxygen saturation. Oxygen exists in two forms in the arterial circulation: dissolved (PaO2) or bound to haemoglobin (SaO2). Because of the sigmoidal shape of the oxyhaemoglobin dissociation curve, SpO2 is a late marker of arterial hypoxaemia. Indeed, SpO2 only starts to decrease after a marked drop in PaO2. Hypoxaemia is a frequent situation, both in the operating theatre during the period of securing the airway, intra-operatively, or post-operatively, after extubation, on episodes of alveolar hypoventilation, such as atelectasis. In intensive care units, it can occur in injured lungs with various aetiologies (infectious, inflammatory, cardiac, etc). It is an independent predictive factor of mortality. Exposure of patients to high hyperoxia (FiO2>0.7), over a long period of time, can lead to pulmonary endothelial damage (due to the formation of reactive oxygen species, ROS), denitrogenation atelectasis, and possibly a systemic inflammatory cascade. It is currently suggested that hyperoxia may also have a haemodynamic impact, with a fall in cardiac output and peripheral vasoconstriction, particularly in healthy volunteers and patients with cardiac decompensation. However, hyperoxia is a frequent situation during the perioperative period as it provides safety and a potential oxygen reserve in case of adverse events: hemodynamic degradation, cardiac arrest, extubation... The ORI™ or Oxygen Reserve Index (Masimo, Irvine, CA, USA) is a non-invasive monitoring system for measuring oxygen reserve. It is a digital sensor (almost identical to the SpO2 sensor) which allows an analysis of the absorption of arterial, venous and capillary components. The measured index, unitless, ranges from 0.00 to 1.00 for moderate hyperoxia levels: from 100 to 200 mmHg. It can alert the clinician to a drop in oxygen stores via the drop in SvO2 before a drop in SpO2 is observed. There is little literature on ORI™. A previous study showed a poor correlation between ORI™ (ranging from 0.24 to 0.55) and PaO2, which ranged from 100 to 150 mmHg, respectively. The company, Masimo, has recently made a change in its algorithm, allowing it to re-calibrate its sensor. However, no new correlation research has been conducted. We therefore propose to carry out a new test phase. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT05921656 -
Construction and Evaluation of Airway Leakage Risk Model of Patients With Endotracheal Tube
|
||
Recruiting |
NCT03941002 -
Continuous Evaluation of Diaphragm Function
|
N/A | |
Withdrawn |
NCT04288076 -
The Brain and Lung Interaction (BALI) Study
|
N/A | |
Completed |
NCT03031860 -
Semi-quantitative Cough Strength Score (SCSS)
|
N/A | |
Completed |
NCT02545621 -
A Role for RAGE/TXNIP/Inflammasome Axis in Alveolar Macrophage Activation During ARDS (RIAMA): a Proof-of-concept Clinical Study
|
||
Completed |
NCT02312869 -
Local Assessment of Management of Burn Patients
|
N/A | |
Completed |
NCT01885442 -
TryCYCLE: A Pilot Study of Early In-bed Leg Cycle Ergometry in Mechanically Ventilated Patients
|
N/A | |
Completed |
NCT01204281 -
Proportional Assist Ventilation (PAV) in Early Stage of Critically Ill Patients
|
Phase 4 | |
Terminated |
NCT01059929 -
Dexmedetomidine Versus Propofol in the Medical Intensive Care Unit (MICU)
|
Phase 4 | |
Completed |
NCT00824239 -
Intermittent Sedation Versus Daily Interruption of Sedation in Mechanically Ventilated Patients
|
Phase 3 | |
Completed |
NCT00529347 -
Mechanical Ventilation Controlled by the Electrical Activity of the Patient's Diaphragm - Effects of Changes in Ventilator Parameters on Breathing Pattern
|
Phase 1 | |
Unknown status |
NCT00260676 -
Protective Ventilatory Strategy in Potential Organ Donors
|
Phase 3 | |
Terminated |
NCT00205517 -
Sedation and Psychopharmacology in Critical Care
|
N/A | |
Completed |
NCT03281785 -
Ultrasound of Diaphragmatic Musculature in Mechanically Ventilated Patients.
|
N/A | |
Recruiting |
NCT04110613 -
RCT: Early Feeding After PEG Placement
|
N/A | |
Completed |
NCT04410783 -
The Emergency Department Sedation Pilot Trial
|
N/A | |
Recruiting |
NCT04821453 -
NAVA vs. CMV Crossover in Severe BPD
|
N/A | |
Completed |
NCT03930147 -
Ventilation With ASV Mode in Children
|
N/A | |
Recruiting |
NCT05029167 -
REstrictive Versus LIberal Oxygen Strategy and Its Effect on Pulmonary Hypertension After Out-of-hospital Cardiac Arrest (RELIEPH-study)
|
N/A | |
Recruiting |
NCT04849039 -
Lung Microbiota and VAP Development (PULMIVAP)
|