Mechanical Ventilation Clinical Trial
Official title:
Effect of Positive End-expiratory Pressure on Optimal Balloon Volume During Esophageal Pressure Monitoring in Mechanical Ventilated Patients: A Clinical Feasibility Study
Esophageal pressure (PES), which has been used as a surrogate for pleural pressure. The volume of esophageal balloon can influence the accuracy of monitoring esophageal pressure. The optimal balloon volume is directly dependent on surrounding pressure. In the present study,the investigators will observe the optimal volume of esophageal balloon during the different PEEP in bench and clinical study.
The esophageal pressure (Pes) is used as a surrogate for pleural pressure to obtain
transpulmonary pressure. Catheter with air balloon is the most commonly used method to
measure the Pes. The optimal injected volume of the balloon is the key factor in accurate
measurement of Pes. The recoil pressure of the balloon turns up while the balloon is
over-filled, resulting in over-estimation of the PES; on the other hand, an under-filled
balloon also cannot properly transmit the surrounding pressure of balloon. However, the
researchers showed the optimal balloon volumes is related to the surrounding pressure and
even is not correspond with manufacturer's recommendations. Theoretically, when balloon
transmural pressure(PTM) is zero, representing the balloon in a condition with equivalent
pressure inside and outside of the balloon, it was defined as optimal volume. However, in
clinical settings, it is difficult to determine the balloon PTM, and therefore the optimal
volume cannot be obtained, because the surrounding pressure of the balloon cannot be
conveniently measured.
In the present study, the investigators will develop a simple method to obtain the optimal
balloon volume and observe the effect of positive end-expiratory pressure on optimal balloon
volume during esophageal pressure monitoring. The investigators want to validate the accuracy
of method in the bench study and clinical feasibility in mechanical ventilated patients.
;
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT05921656 -
Construction and Evaluation of Airway Leakage Risk Model of Patients With Endotracheal Tube
|
||
Recruiting |
NCT03941002 -
Continuous Evaluation of Diaphragm Function
|
N/A | |
Withdrawn |
NCT04288076 -
The Brain and Lung Interaction (BALI) Study
|
N/A | |
Completed |
NCT03031860 -
Semi-quantitative Cough Strength Score (SCSS)
|
N/A | |
Completed |
NCT02312869 -
Local Assessment of Management of Burn Patients
|
N/A | |
Completed |
NCT02545621 -
A Role for RAGE/TXNIP/Inflammasome Axis in Alveolar Macrophage Activation During ARDS (RIAMA): a Proof-of-concept Clinical Study
|
||
Completed |
NCT01885442 -
TryCYCLE: A Pilot Study of Early In-bed Leg Cycle Ergometry in Mechanically Ventilated Patients
|
N/A | |
Completed |
NCT01204281 -
Proportional Assist Ventilation (PAV) in Early Stage of Critically Ill Patients
|
Phase 4 | |
Terminated |
NCT01059929 -
Dexmedetomidine Versus Propofol in the Medical Intensive Care Unit (MICU)
|
Phase 4 | |
Completed |
NCT00824239 -
Intermittent Sedation Versus Daily Interruption of Sedation in Mechanically Ventilated Patients
|
Phase 3 | |
Completed |
NCT00529347 -
Mechanical Ventilation Controlled by the Electrical Activity of the Patient's Diaphragm - Effects of Changes in Ventilator Parameters on Breathing Pattern
|
Phase 1 | |
Unknown status |
NCT00260676 -
Protective Ventilatory Strategy in Potential Organ Donors
|
Phase 3 | |
Terminated |
NCT00205517 -
Sedation and Psychopharmacology in Critical Care
|
N/A | |
Completed |
NCT03281785 -
Ultrasound of Diaphragmatic Musculature in Mechanically Ventilated Patients.
|
N/A | |
Recruiting |
NCT04110613 -
RCT: Early Feeding After PEG Placement
|
N/A | |
Completed |
NCT04410783 -
The Emergency Department Sedation Pilot Trial
|
N/A | |
Recruiting |
NCT04821453 -
NAVA vs. CMV Crossover in Severe BPD
|
N/A | |
Completed |
NCT03930147 -
Ventilation With ASV Mode in Children
|
N/A | |
Recruiting |
NCT05029167 -
REstrictive Versus LIberal Oxygen Strategy and Its Effect on Pulmonary Hypertension After Out-of-hospital Cardiac Arrest (RELIEPH-study)
|
N/A | |
Recruiting |
NCT04849039 -
Lung Microbiota and VAP Development (PULMIVAP)
|