Machine Learning Clinical Trial
Official title:
Impact of Machine Learning-based Clinician Decision Support Algorithms in Perioperative Care - A Randomized Control Trial (IMAGINATIVE Trial)
Predicting surgical risks are important to patients and clinicians for shared decision making process and management plan. The study team aim to conduct a hybrid type 1 effectiveness implementation study design. A Randomized Controlled Trial where participants undergoing surgery In Singapore General Hospital (SGH) will be allocated in 1:1 ratio to CARES-guided (unblinded to risk level) or to unguided (blinded to risk level) groups. All participants undergoing elective surgeries in SGH will be considered eligible for enrolment into the study. For elective surgeries, the participants will mainly be recruited from Pre-admission Centre. The outcome of this study will help patients and clinicians make better decisions together. Firstly, the deployment of the CARES model in a live clinical environment could potentially reduce postoperative complications and improve the quality of surgical care provision. The findings from this study would allow fine-tuning of CARES as well as further deployment of additional risk models for specific complications other than Mortality and ICU stay. This in turn would translate to better health for the surgical population and improved cost-effectiveness. This is significant as the surgical population is expected to continuously grow due to improved access to care, better technologies and the aging population. Secondly, IMAGINATIVE will be instrumental in improving our understanding of the deployment strategies for AI/ML predictive models in healthcare. Models such as CARES could be the standard of care in the future if proven to improve the health outcomes of patients. As model deployments are costly and can be disruptive to the EMR processes, this study would be the initial spark for future deployment and health services research focusing on improving the value of these model deployments.
n/a
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05040958 -
Carotid Atherosclerotic Plaque Load and Neck Circumference
|
||
Completed |
NCT04440553 -
A Mobile App to Increase Physical Activity in Students
|
N/A | |
Completed |
NCT04977687 -
Machine Learning Predict Renal Replacement Therapy After Cardiac Surgery
|
||
Completed |
NCT04966598 -
Machine Learning Predict Acute Kidney Injury in Patients Following Cardiac Surgery
|
||
Completed |
NCT04828655 -
Analysis of Bioparametric Measures for Correlating Daily Habits and Reducing Blood Pressure
|
N/A | |
Recruiting |
NCT06277297 -
Prognotic Role of CMR in Takotsubo Syndrome
|
||
Recruiting |
NCT06204133 -
Model Study on Cervical Cancer Screening Strategies and Risk Prediction
|
||
Completed |
NCT05085743 -
Prediction of Endotracheal Tube Depth by Using Deep Convolutional Neural Networks
|
||
Not yet recruiting |
NCT04399811 -
Near-infrared Vision for Microcirculatory Status
|
||
Recruiting |
NCT05906719 -
Machine Vision Based MDS-UPDRS III Machine Rating
|
||
Completed |
NCT06278272 -
AI Evaluation of Pancreatic Exocrine Insufficiency in CP Patients
|
||
Withdrawn |
NCT05442762 -
Social Media-based Vaccine Confidence and Hesitancy Monitoring
|
||
Not yet recruiting |
NCT06421480 -
Using Machine Learning to Detect Risky Behavior in Psychiatric Clinics
|
||
Not yet recruiting |
NCT06423066 -
Developing a Machine Learning Model to Predict Pleural Adhesion Preoperatively Using Pleural Ultrasound
|
||
Not yet recruiting |
NCT06428344 -
Accuracy of an Artificial Intelligence-assisted Diagnostic System for Caries Diagnosis: a Prospective Multicenter Clinical Study
|
||
Not yet recruiting |
NCT05797064 -
Establishment of a Feasibility Model for NOSE Surgery Based on Machine Learning
|
||
Recruiting |
NCT05410171 -
Machine Learning-based Early Clinical Warning of High-risk Patients
|
N/A | |
Active, not recruiting |
NCT04192175 -
Identification of Patients Admitted With COPD Exacerbations and Predicting Readmission Risk Using Machine Learning
|
||
Completed |
NCT05433519 -
Diagnostic Accuracy of a Novel Machine Learning Algorithm to Estimate Gestational Age
|
||
Recruiting |
NCT05858892 -
Comparison of an Artificial Intelligence-Assisted Rehabilitation Program for Shoulder Musculoskeletal Disorders and the Clinical Decision Making of Therapists
|