Clinical Trials Logo

Clinical Trial Summary

History and scientific evidence show that it is critical to maintain public trust and confidence in vaccination. Any crisis in confidence has the potential to cause significant disruption and a detrimental impact on vaccination. Vaccine hesitancy is a complex and context-specific issue that varies across time, place, and vaccines. It has been cited by World Health Organization(WHO) as one of the top ten threats to global health in 2019. Coronavirus disease(COVID-19) pandemic may change public confidence in vaccines. Therefore, it is necessary to establish a surveillance system to monitor vaccine confidence and hesitancy in real time. To date, a growing body of literature has used social media platforms such as Twitter and weico for public health research. Large amounts of real time data posted on social media platforms can be used to quickly identify the public's attitudes on vaccines, as a way to support health communication and health promotion, messaging. However, textual data on social media is difficult to be analyzed. Recent progress in machine learning makes it possible to automatically analyze textual data on social media in real time. In this study, the investigators will establish a social media surveillance and analysis platform on vaccines, develop a series of machine learning models to monitor vaccine confidence and early detect emerging vaccine-related risks, and assess public communication around vaccines. The investigators will assess the temporal and spatial distribution of vaccine confidence and hesitancy globally using Twitter data and in China using weico data, for all vaccines and Human Papilloma Virus(HPV) vaccine, respectively. Our study will guide the design of effective health communication strategies to improve vaccine confidence.


Clinical Trial Description

1. Collect and update social media data regarding vaccines The investigators will automatically collect all social media posts regarding vaccines in real time. Social media cohort database will be established and updated for all vaccines and Human Papilloma Virus(HPV) vaccine, respectively. 2. Monitor vaccine confidence and hesitancy in real time: deep (supervised) machine learning models Deep learning model, a supervised machine learning technique, will be used to analyze text data on social media in real time according to the predefined vaccine confidence and hesitancy framework. The investigators will first manually annotate a subset of social media posts (20,000 posts) regarding vaccines. The initial manually-annotated posts are then used to train and evaluate deep learning models. Deep learning models with the best performance are selected and applied to classify all vaccine-related posts according to the vaccine confidence and hesitancy framework. 3. Monitor emerging concerns and sentiment swings in real time to early warn vaccine-related risks or crises: topic (unsupervised) machine learning models and linguistic analysis There are some topics outside of the predefined vaccine confidence and hesitancy framework used in deep learning models, and new topics emerge in any time. Vaccine crisis would influence public sentiments. Monitoring emerging topics and sentiment swings will provide early warning of vaccine-related risks or crises. Use Topic Modeling, an unsupervised machine learning technique that can automatically classify text to representative topics in social media, to monitor emerging topics and concerns regarding vaccines. 4. Assess public engagement on social media to inform effective health communication strategies: social media engagement analysis Besides posts data on social media, engagement data of posts are also available to be analyzed, including likes, comments, and shares of posts. The investigators will conduct social media engagement analysis to investigate public communication around vaccines online. This will guide the design of effective health communication strategies. 5. Establish social media surveillance and analysis platform for vaccine confidence and crisis Through the steps above, the investigators will establish a social media surveillance and analysis platform for vaccine confidence and crisis. Time-series trends, geographic variation, and associated factors of the indicators produced above will be presented to monitor vaccine confidence in real time, early warn emerging risks or crises, and inform effective health communication strategies. 6. Past research experience The investigators have conducted a series of relevant studies to analyze social media data using machine learning techniques during the COVID-19 epidemic, covering COVID-19 vaccine confidence and public response to COVID-19. These experiences make the current study feasible. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT05442762
Study type Observational
Source Fudan University
Contact
Status Withdrawn
Phase
Start date March 1, 2022
Completion date June 24, 2022

See also
  Status Clinical Trial Phase
Recruiting NCT05040958 - Carotid Atherosclerotic Plaque Load and Neck Circumference
Completed NCT04440553 - A Mobile App to Increase Physical Activity in Students N/A
Completed NCT04977687 - Machine Learning Predict Renal Replacement Therapy After Cardiac Surgery
Completed NCT04966598 - Machine Learning Predict Acute Kidney Injury in Patients Following Cardiac Surgery
Completed NCT04828655 - Analysis of Bioparametric Measures for Correlating Daily Habits and Reducing Blood Pressure N/A
Recruiting NCT06277297 - Prognotic Role of CMR in Takotsubo Syndrome
Recruiting NCT06204133 - Model Study on Cervical Cancer Screening Strategies and Risk Prediction
Completed NCT05085743 - Prediction of Endotracheal Tube Depth by Using Deep Convolutional Neural Networks
Not yet recruiting NCT05809232 - Impact of Machine Learning-based Clinician Decision Support Algorithms in Perioperative Care N/A
Not yet recruiting NCT04399811 - Near-infrared Vision for Microcirculatory Status
Recruiting NCT05906719 - Machine Vision Based MDS-UPDRS III Machine Rating
Completed NCT06278272 - AI Evaluation of Pancreatic Exocrine Insufficiency in CP Patients
Not yet recruiting NCT06421480 - Using Machine Learning to Detect Risky Behavior in Psychiatric Clinics
Not yet recruiting NCT06423066 - Developing a Machine Learning Model to Predict Pleural Adhesion Preoperatively Using Pleural Ultrasound
Not yet recruiting NCT06428344 - Accuracy of an Artificial Intelligence-assisted Diagnostic System for Caries Diagnosis: a Prospective Multicenter Clinical Study
Not yet recruiting NCT05797064 - Establishment of a Feasibility Model for NOSE Surgery Based on Machine Learning
Recruiting NCT05410171 - Machine Learning-based Early Clinical Warning of High-risk Patients N/A
Active, not recruiting NCT04192175 - Identification of Patients Admitted With COPD Exacerbations and Predicting Readmission Risk Using Machine Learning
Completed NCT05433519 - Diagnostic Accuracy of a Novel Machine Learning Algorithm to Estimate Gestational Age
Recruiting NCT05858892 - Comparison of an Artificial Intelligence-Assisted Rehabilitation Program for Shoulder Musculoskeletal Disorders and the Clinical Decision Making of Therapists