Clinical Trials Logo

Clinical Trial Details — Status: Active, not recruiting

Administrative data

NCT number NCT04410406
Other study ID # 202005076
Secondary ID
Status Active, not recruiting
Phase Phase 3
First received
Last updated
Start date August 20, 2020
Est. completion date September 1, 2024

Study information

Verified date October 2023
Source Washington University School of Medicine
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

The purpose of this study is to determine whether moxidectin (Mox) will be more effective than ivermectin (IVM) when used in single-dose combination therapies for lymphatic filariasis (LF).


Description:

This study will test the hypothesis that Moxidectin combination therapies are superior to ivermectin combination therapies for achieving sustained clearance of W. bancrofti microfilaremia. This trial is designed as single-site, Phase III, randomized, open-label, masked-observer superiority trial with four treatment arms: ivermectin + albendazole (IA), moxidectin + albendazole (MoxA), ivermectin + diethylcarbamazine + albendazole (IDA), and moxidectin + diethylcarbamazine + albendazole (MoxDA). The primary endpoint is the proportion of participants achieving complete clearance of microfilaremia at 12 months (IA vs. MoxA comparison) or 24 months (IDA vs. MoxDA comparison). Block randomization by gender will be used to assign treatment arms. The first 48 participants (12 each arm) will be treated at Agboville Hospital in Cote d'Ivoire at the Centre de Recherche de Filariose with inpatient AE monitoring and collection of post-treatment plasma drug levels (Part 1). For Part 1, active AE surveillance will be conducted in the hospital on days 1, 2, and 3, post-treatment, and in the participant's village of residence on day 7 post-treatment and passive surveillance will be conducted by trained village health workers on days 4-6. An interim safety analysis will take place after Part 1. If no safety concerns are identified, the remainder of the participants will be treated in their home villages, with active AE monitoring on days 1 and 2 post-treatment (Part 2) with passive surveillance by trained village health workers on days 3-7. Any participant in either Part 1 or Part 2 experiencing AEs of grade 2 or higher will be followed until adverse event (AE) severity falls below grade 2. Follow-up assessments for efficacy of treatments for all participants (Parts 1 and 2) will be conducted at 6, 12, 24, and 36 months. The study includes both safety and efficacy analyses. The safety assessment (Part 1 only) ends 7 days after treatment (unless AEs remain grade 2 or higher). The efficacy assessment (Parts 1 and 2 combined) ends when participants are retested for filarial infection 36 months post-treatment. Participants in the IA arm will receive IA annually (standard of care). Participants in the other arms will receive the assigned treatment at baseline; those found to be microfilaremic at 24 months post-treatment will be retreated with the same treatment received at baseline. If clearance of microfilariae (Mf) at 12 months in the IA arm is superior to Mf clearance in the MoxA arm, the MoxA group will be switched to annual IA treatment. The study design does not currently include stratification, nor do any sub-studies. However, the study may stratify based on pre-treatment Mf levels if high variability among pre-screening Mf counts is observed.


Recruitment information / eligibility

Status Active, not recruiting
Enrollment 164
Est. completion date September 1, 2024
Est. primary completion date September 1, 2024
Accepts healthy volunteers Accepts Healthy Volunteers
Gender All
Age group 18 Years to 70 Years
Eligibility Inclusion Criteria: - Provision of signed and dated informed consent form - Male or female, aged 18-70 years - In good general health as evidenced by medical history - Peripheral night blood W. bancrofti Mf levels =40 Mf/mL - No history of taking antifilarial medications in past 12 months - Resident of the study area with no plans to change residence in the next 36 months - For women of childbearing potential, willing to use appropriate method of contraception for one month following each treatment Exclusion Criteria: - Pregnancy or currently breastfeeding - Known allergic reactions to any of the study medications - Evidence of severe or systemic comorbidities (aside from features of filarial disease), as judged by the principal investigator - Baseline biochemical abnormalities, as indicated by AST, ALT, or creatinine > 2 times the upper limit of normal - Evidence of urinary tract infection as indicated by 3+ nitrites on dipstick (individuals with 1+ or 2+ nitrites will not be excluded) or underlying chronic kidney disease as indicated by 3+ protein or 3+ blood on urine dipstick exam - Hgb < 7 gm/dL (any such individuals will be referred to the local health center for evaluation and treatment) - Positive skin snip for onchocerciasis

Study Design


Related Conditions & MeSH terms


Intervention

Drug:
Ivermectin
Ivermectin (IVM) 200 µg/kg
Diethylcarbamazine
Diethylcarbamazine (DEC) 6mg/kg
Albendazole
Albendazole (ABZ) 400 mg
Moxidectin
Moxidectin (Mox) 8 mg

Locations

Country Name City State
Côte D'Ivoire Regional Hospital of Agboville, Southern Cote d'Ivoire Agboville

Sponsors (3)

Lead Sponsor Collaborator
Washington University School of Medicine Case Western Reserve University, Regional Hospital of Agboville, Southern Cote d'Ivoire

Country where clinical trial is conducted

Côte D'Ivoire, 

References & Publications (26)

Awadzi K, Edwards G, Duke BO, Opoku NO, Attah SK, Addy ET, Ardrey AE, Quartey BT. The co-administration of ivermectin and albendazole--safety, pharmacokinetics and efficacy against Onchocerca volvulus. Ann Trop Med Parasitol. 2003 Mar;97(2):165-78. doi: 10.1179/000349803235001697. — View Citation

Awadzi K, Edwards G, Opoku NO, Ardrey AE, Favager S, Addy ET, Attah SK, Yamuah LK, Quartey BT. The safety, tolerability and pharmacokinetics of levamisole alone, levamisole plus ivermectin, and levamisole plus albendazole, and their efficacy against Onchocerca volvulus. Ann Trop Med Parasitol. 2004 Sep;98(6):595-614. doi: 10.1179/000349804225021370. — View Citation

Bolla S, Boinpally RR, Poondru S, Devaraj R, Jasti BR. Pharmacokinetics of diethylcarbamazine after single oral dose at two different times of day in human subjects. J Clin Pharmacol. 2002 Mar;42(3):327-31. doi: 10.1177/00912700222011247. — View Citation

Budge PJ, Herbert C, Andersen BJ, Weil GJ. Adverse events following single dose treatment of lymphatic filariasis: Observations from a review of the literature. PLoS Negl Trop Dis. 2018 May 16;12(5):e0006454. doi: 10.1371/journal.pntd.0006454. eCollection 2018 May. — View Citation

Chhonker YS, Sleightholm RL, Murry DJ. Bioanalytical method development and validation of moxidectin in plasma by LC-MS/MS: Application to in vitro metabolism. Biomed Chromatogr. 2019 Feb;33(2):e4389. doi: 10.1002/bmc.4389. Epub 2018 Oct 30. — View Citation

Edi C, Bjerum CM, Ouattara AF, Chhonker YS, Penali LK, Meite A, Koudou BG, Weil GJ, King CL, Murry DJ. Pharmacokinetics, safety, and efficacy of a single co-administered dose of diethylcarbamazine, albendazole and ivermectin in adults with and without Wuchereria bancrofti infection in Cote d'Ivoire. PLoS Negl Trop Dis. 2019 May 20;13(5):e0007325. doi: 10.1371/journal.pntd.0007325. eCollection 2019 May. — View Citation

Geary TG, Woo K, McCarthy JS, Mackenzie CD, Horton J, Prichard RK, de Silva NR, Olliaro PL, Lazdins-Helds JK, Engels DA, Bundy DA. Unresolved issues in anthelmintic pharmacology for helminthiases of humans. Int J Parasitol. 2010 Jan;40(1):1-13. doi: 10.1016/j.ijpara.2009.11.001. Epub 2009 Nov 20. — View Citation

Geary TG. Ivermectin 20 years on: maturation of a wonder drug. Trends Parasitol. 2005 Nov;21(11):530-2. doi: 10.1016/j.pt.2005.08.014. Epub 2005 Aug 26. — View Citation

Hertz MI, Nana-Djeunga H, Kamgno J, Jelil Njouendou A, Chawa Chunda V, Wanji S, Rush A, Fischer PU, Weil GJ, Budge PJ. Identification and characterization of Loa loa antigens responsible for cross-reactivity with rapid diagnostic tests for lymphatic filariasis. PLoS Negl Trop Dis. 2018 Nov 16;12(11):e0006963. doi: 10.1371/journal.pntd.0006963. eCollection 2018 Nov. — View Citation

Horton J, Witt C, Ottesen EA, Lazdins JK, Addiss DG, Awadzi K, Beach MJ, Belizario VY, Dunyo SK, Espinel M, Gyapong JO, Hossain M, Ismail MM, Jayakody RL, Lammie PJ, Makunde W, Richard-Lenoble D, Selve B, Shenoy RK, Simonsen PE, Wamae CN, Weerasooriya MV. An analysis of the safety of the single dose, two drug regimens used in programmes to eliminate lymphatic filariasis. Parasitology. 2000;121 Suppl:S147-60. doi: 10.1017/s0031182000007423. — View Citation

Horton J. Albendazole: a broad spectrum anthelminthic for treatment of individuals and populations. Curr Opin Infect Dis. 2002 Dec;15(6):599-608. doi: 10.1097/00001432-200212000-00008. — View Citation

Ichimori K, King JD, Engels D, Yajima A, Mikhailov A, Lammie P, Ottesen EA. Global programme to eliminate lymphatic filariasis: the processes underlying programme success. PLoS Negl Trop Dis. 2014 Dec 11;8(12):e3328. doi: 10.1371/journal.pntd.0003328. eCollection 2014 Dec. No abstract available. — View Citation

Irvine MA, Stolk WA, Smith ME, Subramanian S, Singh BK, Weil GJ, Michael E, Hollingsworth TD. Effectiveness of a triple-drug regimen for global elimination of lymphatic filariasis: a modelling study. Lancet Infect Dis. 2017 Apr;17(4):451-458. doi: 10.1016/S1473-3099(16)30467-4. Epub 2016 Dec 22. — View Citation

King CL, Suamani J, Sanuku N, Cheng YC, Satofan S, Mancuso B, Goss CW, Robinson LJ, Siba PM, Weil GJ, Kazura JW. A Trial of a Triple-Drug Treatment for Lymphatic Filariasis. N Engl J Med. 2018 Nov 8;379(19):1801-1810. doi: 10.1056/NEJMoa1706854. — View Citation

Kitzman D, Cheng KJ, Fleckenstein L. HPLC assay for albendazole and metabolites in human plasma for clinical pharmacokinetic studies. J Pharm Biomed Anal. 2002 Oct 15;30(3):801-13. doi: 10.1016/s0731-7085(02)00382-5. — View Citation

Kitzman D, Wei SY, Fleckenstein L. Liquid chromatographic assay of ivermectin in human plasma for application to clinical pharmacokinetic studies. J Pharm Biomed Anal. 2006 Mar 3;40(4):1013-20. doi: 10.1016/j.jpba.2005.08.026. Epub 2005 Oct 19. — View Citation

Kyelem D, Biswas G, Bockarie MJ, Bradley MH, El-Setouhy M, Fischer PU, Henderson RH, Kazura JW, Lammie PJ, Njenga SM, Ottesen EA, Ramaiah KD, Richards FO, Weil GJ, Williams SA. Determinants of success in national programs to eliminate lymphatic filariasis: a perspective identifying essential elements and research needs. Am J Trop Med Hyg. 2008 Oct;79(4):480-4. — View Citation

McGarry HF, Plant LD, Taylor MJ. Diethylcarbamazine activity against Brugia malayi microfilariae is dependent on inducible nitric-oxide synthase and the cyclooxygenase pathway. Filaria J. 2005 Jun 2;4:4. doi: 10.1186/1475-2883-4-4. — View Citation

Molyneux DH, Hopkins A, Bradley MH, Kelly-Hope LA. Multidimensional complexities of filariasis control in an era of large-scale mass drug administration programmes: a can of worms. Parasit Vectors. 2014 Aug 15;7:363. doi: 10.1186/1756-3305-7-363. — View Citation

Moreno Y, Nabhan JF, Solomon J, Mackenzie CD, Geary TG. Ivermectin disrupts the function of the excretory-secretory apparatus in microfilariae of Brugia malayi. Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):20120-5. doi: 10.1073/pnas.1011983107. Epub 2010 Nov 1. — View Citation

Opoku NO, Bakajika DK, Kanza EM, Howard H, Mambandu GL, Nyathirombo A, Nigo MM, Kasonia K, Masembe SL, Mumbere M, Kataliko K, Larbelee JP, Kpawor M, Bolay KM, Bolay F, Asare S, Attah SK, Olipoh G, Vaillant M, Halleux CM, Kuesel AC. Single dose moxidectin versus ivermectin for Onchocerca volvulus infection in Ghana, Liberia, and the Democratic Republic of the Congo: a randomised, controlled, double-blind phase 3 trial. Lancet. 2018 Oct 6;392(10154):1207-1216. doi: 10.1016/S0140-6736(17)32844-1. Epub 2018 Jan 18. Erratum In: Lancet. 2018 Oct 6;392(10154):1196. — View Citation

Ottesen EA, Duke BO, Karam M, Behbehani K. Strategies and tools for the control/elimination of lymphatic filariasis. Bull World Health Organ. 1997;75(6):491-503. — View Citation

Ottesen EA. Lymphatic filariasis: Treatment, control and elimination. Adv Parasitol. 2006;61:395-441. doi: 10.1016/S0065-308X(05)61010-X. — View Citation

Thomsen EK, Sanuku N, Baea M, Satofan S, Maki E, Lombore B, Schmidt MS, Siba PM, Weil GJ, Kazura JW, Fleckenstein LL, King CL. Efficacy, Safety, and Pharmacokinetics of Coadministered Diethylcarbamazine, Albendazole, and Ivermectin for Treatment of Bancroftian Filariasis. Clin Infect Dis. 2016 Feb 1;62(3):334-341. doi: 10.1093/cid/civ882. Epub 2015 Oct 20. — View Citation

Weil GJ, Bogus J, Christian M, Dubray C, Djuardi Y, Fischer PU, Goss CW, Hardy M, Jambulingam P, King CL, Kuttiat VS, Krishnamoorthy K, Laman M, Lemoine JF, O'Brian KK, Robinson LJ, Samuela J, Schechtman KB, Sircar A, Srividya A, Steer AC, Supali T, Subramanian S; DOLF IDA Safety Study Group. The safety of double- and triple-drug community mass drug administration for lymphatic filariasis: A multicenter, open-label, cluster-randomized study. PLoS Med. 2019 Jun 24;16(6):e1002839. doi: 10.1371/journal.pmed.1002839. eCollection 2019 Jun. — View Citation

Weil GJ, Lammie PJ, Richards FO Jr, Eberhard ML. Changes in circulating parasite antigen levels after treatment of bancroftian filariasis with diethylcarbamazine and ivermectin. J Infect Dis. 1991 Oct;164(4):814-6. doi: 10.1093/infdis/164.4.814. — View Citation

* Note: There are 26 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Clearance of microfilaremia (IA vs. MoxA) The proportion of participants in IA and MoxA study arms with complete clearance of W. bancrofti microfilaremia at 12 months after treatment. 12 months
Primary Clearance of microfilaremia (IDA vs. MoxDA) The proportion of participants in IDA and MoxDA study arms with complete clearance of W. bancrofti microfilaremia at 24 months after treatment. 24 months
Secondary Clearance of microfilaremia The proportion of participants in each study arm with complete clearance of W. bancrofti microfilaremia at 6, 12, 24, & 36 months after treatment. 6, 12, 24, & 36 months
Secondary Reduction in Mf counts Reduction in microfilariae counts (relative to baseline) at 6, 12, & 24 months Baseline, 6, 12, & 24 months
Secondary Reduction in circulating filarial antigen (CFA) counts Reduction in circulating filarial antigen (CFA) counts (relative to baseline) at 6, 12, & 24 months Baseline, 6, 12, & 24 months
Secondary Inactivation of adult worm nests Inactivation of adult worm nests as assessed by scrotal ultrasound at 6, 12, and 24 months after treatment 6, 12, & 24 months
Secondary Frequency and severity of AEs Frequency and severity of AEs during the first 7 days after treatment. From baseline treatment to 7 days post-treatment
Secondary Plasma levels of drugs/metabolites post treatment Noncompartmental pharmacokinetic analyses of DEC, ABZ, ABZSO, ABZSO2, IVM and Mox concentrations will be conducted using WinNonlin (Pharsight Corporation; Cary, North Carolina, USA). Drug plasma concentrations and computed pharmacokinetic parameters will be listed by subject and summarized by drug or metabolite (geometric mean with coefficient of variation, arithmetic mean with standard deviation, minimum, maximum, number of observations). Individual and geometric mean (by time) concentrations versus time will be plotted for each treatment group on both linear and natural logarithm scales. Baseline, 2, 3, 4, 6, 12, 24, & 48 hours post-treatment
See also
  Status Clinical Trial Phase
Completed NCT00375583 - Effect of Albendazole Dose on Clearance of Filarial Worms Phase 2
Completed NCT03664063 - PK PD Study of IDA and Azithromycin for NTDs ( ComboNTDs ) Phase 2
Recruiting NCT04844905 - Adjunctive Ivermectin Mass Drug Administration for Malaria Control Phase 3
Completed NCT01975441 - Eval 3-Drug Therapy Diethylcarbamize, Albendazole and Ivermectin That Could Accelerate LF Elimination Outside of Africa Phase 2
Completed NCT01629771 - Disability and Quality of Life in Patients With Lymphatic Filariasis in Rural Southern India N/A
Completed NCT01905423 - Optimization of Mass Drug Administration With Existing Drug Regimens for Lymphatic Filariasis and Onchocerciasis
Completed NCT02784743 - Impact of Albendazole -Ivermectin on Wuchereria Bancrofti in Mali Phase 4
Completed NCT03036059 - Twice Yearly Treatment for the Control of LF Phase 4
Completed NCT01905436 - Mass Drug Administration for Lymphatic Filariasis and Onchocerciasis for Liberia
Completed NCT02509481 - Repeat Ivermectin Mass Drug Administrations for Control of Malaria: a Pilot Safety and Efficacy Study Phase 2/Phase 3
Completed NCT03268252 - Optimization of MDA With Existing Drug Regimens for LF: Monitoring Efficacy of Ongoing Treatment Programs in PNG
Completed NCT02927496 - A 24 Month Study, to Compare the Efficacy of Doxycycline vs. Placebo for Improving Filarial Lymphedema in Mali Phase 3
Completed NCT02899936 - Death to Onchocerciasis and Lymphatic Filariasis (DOLF) Triple Drug Therapy for Lymphatic Filariasis N/A
Completed NCT00511004 - Effect of Albendazole Dose on Treatment of Lymphatic Filariasis Phase 2
Active, not recruiting NCT04258670 - Spontaneous Antigenemia in Loiasis
Completed NCT02974049 - Lymphatic Filariasis (LF) in Ivory Coast N/A
Terminated NCT01213576 - Efficacy of Higher Albendazole and Ivermectin Doses on Wuchereria Bancrofti Microfilarial Clearance in Malawi N/A
Completed NCT02929121 - A 24 Month Study to Compare Efficacy of Doxycycline vs Placebo for Improving Filarial Lymphedema in India Phase 3
Completed NCT00339417 - Effect of Albendazole Dose on Clearance of Filarial Worms Phase 2
Withdrawn NCT01903057 - Safety Study of Combined Azithromycin, Ivermectin and Albendazole for Trachoma and Lymphatic Filariasis Phase 4