Lung Cancer Clinical Trial
Official title:
Percutaneous Lung Biopsy Using Cone Beam CT With Virtual Guidance: a Randomized Control Trial
Image-guided percutaneous lung biopsy is an essential procedure in lung cancer management, where it is integral to confirming the diagnosis and determining tumour histology. An ideal percutaneous lung biopsy also needs to have a short procedure time with accurate needle placement to minimize the inherent risk of the procedure. Since the 1970s, conventional Multi-detector CT (MDCT) has been the modality of choice in percutaneous lung biopsy. Recent research has proposed CT fluoroscopy and cone-beam CT (CBCT) as alternative methods. Virtual guidance has been developed to improve target visibility and access for these complex cases. More specifically, it plans a potential computed 3D needle path before the procedure, using the CBCT images. This 3D path can be transposed onto real time fluoroscopic images to guide the biopsy, thus potentially improves patients' safety due to more accurate needle placement.
Image-guided percutaneous lung biopsy is an essential procedure in lung cancer management, where it is integral to confirming the diagnosis and determining tumour histology. In this era of personalized medicine where knowledge of specific cellular pathways and molecular characterization relies on obtaining optimal tissue sampling, the critical question is how to obtain a high-quality biopsy tissue sample that could be processed for various pathological assessment from a single, minimally invasive percutaneous image-guided approach. An ideal percutaneous lung biopsy also needs to have a short procedure time with accurate needle placement to minimize the inherent risk of the procedure, including the stochastic effect of radiation, and injuries to structures resulting in pneumothorax, pulmonary hemorrhage, and air embolism, which could all be potentially life threatening. Previous studies have also shown that post-biopsy haemorrhage or pneumothorax requiring chest tubes insertion had worse outcome, increased length of hospital stays, and respiratory failure. Since the 1970s, conventional Multi-detector CT (MDCT) has been the modality of choice in percutaneous lung biopsy, which requires repeated scanning of the target lesion during the procedure and the interventional radiologist entering and leaving the CT suite after each needle adjustment. Recent research has proposed CT fluoroscopy and cone-beam CT (CBCT) as alternative methods. Virtual guidance has been developed to improve target visibility and access for these complex cases. This involves image registration where the real-time imaging dataset is matched to a reference dataset, where the position of a device is displayed on the current imaging dataset in real time. Syngo iGuideTM is a novel navigational software which has the potential for accurate needle guidance in percutaneous biopsy. More specifically, it plans a potential computed 3D needle path before the procedure, using the CBCT images. An integrated laser crosshair is also projected onto the patient's skin to indicate the entry point and angle of the needle at no additional radiation dose to the patient and staff. This 3D path can be transposed onto real time fluoroscopic images to guide the biopsy, thus potentially improves patients' safety due to more accurate needle placement. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT03918538 -
A Series of Study in Testing Efficacy of Pulmonary Rehabilitation Interventions in Lung Cancer Survivors
|
N/A | |
Recruiting |
NCT05078918 -
Comprehensive Care Program for Their Return to Normal Life Among Lung Cancer Survivors
|
N/A | |
Active, not recruiting |
NCT04548830 -
Safety of Lung Cryobiopsy in People With Cancer
|
Phase 2 | |
Completed |
NCT04633850 -
Implementation of Adjuvants in Intercostal Nerve Blockades for Thoracoscopic Surgery in Pulmonary Cancer Patients
|
||
Recruiting |
NCT06037954 -
A Study of Mental Health Care in People With Cancer
|
N/A | |
Recruiting |
NCT06006390 -
CEA Targeting Chimeric Antigen Receptor T Lymphocytes (CAR-T) in the Treatment of CEA Positive Advanced Solid Tumors
|
Phase 1/Phase 2 | |
Recruiting |
NCT05583916 -
Same Day Discharge for Video-Assisted Thoracoscopic Surgery (VATS) Lung Surgery
|
N/A | |
Completed |
NCT00341939 -
Retrospective Analysis of a Drug-Metabolizing Genotype in Cancer Patients and Correlation With Pharmacokinetic and Pharmacodynamics Data
|
||
Not yet recruiting |
NCT06376253 -
A Phase I Study of [177Lu]Lu-EVS459 in Patients With Ovarian and Lung Cancers
|
Phase 1 | |
Recruiting |
NCT05898594 -
Lung Cancer Screening in High-risk Black Women
|
N/A | |
Active, not recruiting |
NCT05060432 -
Study of EOS-448 With Standard of Care and/or Investigational Therapies in Participants With Advanced Solid Tumors
|
Phase 1/Phase 2 | |
Active, not recruiting |
NCT03575793 -
A Phase I/II Study of Nivolumab, Ipilimumab and Plinabulin in Patients With Recurrent Small Cell Lung Cancer
|
Phase 1/Phase 2 | |
Active, not recruiting |
NCT03667716 -
COM701 (an Inhibitor of PVRIG) in Subjects With Advanced Solid Tumors.
|
Phase 1 | |
Terminated |
NCT01624090 -
Mithramycin for Lung, Esophagus, and Other Chest Cancers
|
Phase 2 | |
Terminated |
NCT03275688 -
NanoSpectrometer Biomarker Discovery and Confirmation Study
|
||
Not yet recruiting |
NCT04931420 -
Study Comparing Standard of Care Chemotherapy With/ Without Sequential Cytoreductive Surgery for Patients With Metastatic Foregut Cancer and Undetectable Circulating Tumor-Deoxyribose Nucleic Acid Levels
|
Phase 2 | |
Recruiting |
NCT06010862 -
Clinical Study of CEA-targeted CAR-T Therapy for CEA-positive Advanced/Metastatic Malignant Solid Tumors
|
Phase 1 | |
Recruiting |
NCT06052449 -
Assessing Social Determinants of Health to Increase Cancer Screening
|
N/A | |
Not yet recruiting |
NCT06017271 -
Predictive Value of Epicardial Adipose Tissue for Pulmonary Embolism and Death in Patients With Lung Cancer
|
||
Recruiting |
NCT05787522 -
Efficacy and Safety of AI-assisted Radiotherapy Contouring Software for Thoracic Organs at Risk
|