Clinical Trials Logo

Clinical Trial Summary

The investigators prospectively evaluated in this study the efficacy and safety profiles of afatinib as 3rd or 4th line treatment after prior failure to systemic chemotherapy and first-generation EGFR-TKI under a Boehringer Ingelheim sponsored Compassionate Use Program (CUP), with comparison of our historical cohort who received erlotinib after previous failure to systemic chemotherapy and first-generation EGFR-TKI.


Clinical Trial Description

Study background The investigators prospectively evaluated the use of afatinib as 3rd or 4th line treatment after progression to one line of first-generation EGFR-TKI therapy and at least one line of systemic chemotherapy under this CUP. All patients had documented EGFR activating mutations before the start of afatinib. Determination of EGFR mutation analysis of all patients was described previously. Formalin-fixed paraffin-embedded tumor biopsies before starting 1st TKI therapy were retrieved. Briefly, tumor enrichment was performed by micro-dissection under light microscopy. Genomic DNA was extracted using QIAmp DNA FFPE Tissue kit (Qiagen, Hilden, Germany), followed by polymerase chain reaction (PCR) amplification of EGFR exons 18 to 21 using intron-based primers and sequenced in both forward and reverse directions.

Study population Patients who had EGFR-mutated metastatic NSCLC with prior documented objective response to first-generation TKI (gefitinib or erlotinib) for 6 months and prior treatment of at least 1 line of systemic chemotherapy were eligible to join the CUP offered by Boehringer-Ingelheim Pharma GmbH, Ingelheim, Germany. Patients who had received anti-vascular endothelial growth factor antagonist but not anti-EGFR monoclonal antibody in their previous courses of treatment, either alone or in combination with systemic chemotherapy were allowed to join this CUP. They all had baseline computed tomography scan of the brain, thorax and abdomen with at least 1 evaluable lesion and adequate serum hematological, hepatic and renal function as defined by LUX-Lung1 study.

Treatment The treating physicians then decided the starting dose of afatinib of either 50 mg, 40 mg or 30 mg once daily continuously. After commencement of afatinib, they had regular clinical follow up every 2 weeks for 4 weeks then every 4 weeks until permanent discontinuation of afatinib or death. They also had regular imaging with CT scan every 8-10 weeks for tumor response evaluation by Response Evaluation Criteria for Solid Tumors (RECIST) version 1.1 [16]. Treatment interruption was needed for those who developed grade >= 3 adverse event until it was returned to grade 1 or less. Then afatinib could be resumed but at a one lower dose level. Those who received afatinib 30 mg daily as the initial starting dose would discontinue afatinib permanently if they developed grade >=3 events.

Assessment of efficacy and treatment-related toxicities All treatment-related toxicities were collected and graded according to Common Terminology Criteria for Adverse Events (CTCAE) version 4.0. Objective response (OR) included complete response and partial response while disease control (DC) included complete response, partial response and stable disease according to RECIST 1.1. Survival outcomes included progression-free survival (PFS, defined as time from start of afatinib to first of date of objectively determined progressive disease or death from any cause) and overall survival (OS, time from start of afatinib to date of death from any cause). Time to progression (TTP) started from the date of afatinib commencement to the date of objectively determined progressive disease. All these parameters in those who received afatinib in this study were compared to a historical cohort of patients who received erlotinib after prior failure to gefitinib and at least one line of systemic chemotherapy. All patients in the historical cohort received erlotinib at 150 mg once daily, with the same treatment response evaluation, survival and toxicity assessment as for those who received afatinib.

Statistical analysis Mann-Whitney U was used for comparison of non-parametric variables and chi-square tests were performed for discrete variables. Kaplan-Meier methods with log-rank tests were employed for comparison of survival outcomes and Cox proportional hazard models were used for prognostic factors for PFS after afatinib or erlotinib in univariate and multivariate analyses, with afatinib versus erlotinib, age, sex, performance status, smoking status, histology, TTP for 1st TKI therapy, time interval between 1st TKI and afatinib or erlotinib, TTP for all lines of prior chemotherapy, time interval between last chemotherapy and afatinib or erlotinib as covariates. All statistical analyses were performed by Statistical Package for Social Sciences (SPSS) version 20. ;


Study Design

Allocation: Non-Randomized, Endpoint Classification: Safety/Efficacy Study, Intervention Model: Parallel Assignment, Masking: Open Label, Primary Purpose: Treatment


Related Conditions & MeSH terms


NCT number NCT02625168
Study type Interventional
Source The University of Hong Kong
Contact
Status Completed
Phase Phase 2
Start date January 2013
Completion date December 2014

See also
  Status Clinical Trial Phase
Completed NCT03918538 - A Series of Study in Testing Efficacy of Pulmonary Rehabilitation Interventions in Lung Cancer Survivors N/A
Recruiting NCT05078918 - Comprehensive Care Program for Their Return to Normal Life Among Lung Cancer Survivors N/A
Active, not recruiting NCT04548830 - Safety of Lung Cryobiopsy in People With Cancer Phase 2
Completed NCT04633850 - Implementation of Adjuvants in Intercostal Nerve Blockades for Thoracoscopic Surgery in Pulmonary Cancer Patients
Recruiting NCT06006390 - CEA Targeting Chimeric Antigen Receptor T Lymphocytes (CAR-T) in the Treatment of CEA Positive Advanced Solid Tumors Phase 1/Phase 2
Recruiting NCT06037954 - A Study of Mental Health Care in People With Cancer N/A
Recruiting NCT05583916 - Same Day Discharge for Video-Assisted Thoracoscopic Surgery (VATS) Lung Surgery N/A
Completed NCT00341939 - Retrospective Analysis of a Drug-Metabolizing Genotype in Cancer Patients and Correlation With Pharmacokinetic and Pharmacodynamics Data
Not yet recruiting NCT06376253 - A Phase I Study of [177Lu]Lu-EVS459 in Patients With Ovarian and Lung Cancers Phase 1
Recruiting NCT05898594 - Lung Cancer Screening in High-risk Black Women N/A
Active, not recruiting NCT05060432 - Study of EOS-448 With Standard of Care and/or Investigational Therapies in Participants With Advanced Solid Tumors Phase 1/Phase 2
Active, not recruiting NCT03667716 - COM701 (an Inhibitor of PVRIG) in Subjects With Advanced Solid Tumors. Phase 1
Active, not recruiting NCT03575793 - A Phase I/II Study of Nivolumab, Ipilimumab and Plinabulin in Patients With Recurrent Small Cell Lung Cancer Phase 1/Phase 2
Terminated NCT01624090 - Mithramycin for Lung, Esophagus, and Other Chest Cancers Phase 2
Terminated NCT03275688 - NanoSpectrometer Biomarker Discovery and Confirmation Study
Not yet recruiting NCT04931420 - Study Comparing Standard of Care Chemotherapy With/ Without Sequential Cytoreductive Surgery for Patients With Metastatic Foregut Cancer and Undetectable Circulating Tumor-Deoxyribose Nucleic Acid Levels Phase 2
Recruiting NCT06010862 - Clinical Study of CEA-targeted CAR-T Therapy for CEA-positive Advanced/Metastatic Malignant Solid Tumors Phase 1
Recruiting NCT06052449 - Assessing Social Determinants of Health to Increase Cancer Screening N/A
Not yet recruiting NCT06017271 - Predictive Value of Epicardial Adipose Tissue for Pulmonary Embolism and Death in Patients With Lung Cancer
Recruiting NCT05787522 - Efficacy and Safety of AI-assisted Radiotherapy Contouring Software for Thoracic Organs at Risk