View clinical trials related to Leukemia, Myeloid, Chronic(CML).
Filter by:Blood and marrow stem cell transplant has improved the outcome for patients with high-risk hematologic malignancies. However, most patients do not have an appropriate HLA (immune type) matched sibling donor available and/or are unable to identify an acceptable unrelated HLA matched donor through the registries in a timely manner. Another option is haploidentical transplant using a partially matched family member donor. Although haploidentical transplant has proven curative in many patients, this procedure has been hindered by significant complications, primarily regimen-related toxicity including GVHD and infection due to delayed immune reconstitution. These can, in part, be due to certain white blood cells in the graft called T cells. GVHD happens when the donor T cells recognize the body tissues of the patient (the host) are different and attack these cells. Although too many T cells increase the possibility of GVHD, too few may cause the recipient's immune system to reconstitute slowly or the graft to fail to grow, leaving the patient at high-risk for significant infection. For these reasons, a primary focus for researchers is to engineer the graft to provide a T cell dose that will reduce the risk for GVHD, yet provide a sufficient number of cells to facilitate immune reconstitution and graft integrity. Building on prior institutional trials, this study will provide patients with a haploidentical (HAPLO) graft engineered to specific T cell target values using the CliniMACS system. A reduced intensity, preparative regimen will be used in an effort to reduce regimen-related toxicity and mortality. The primary aim of the study is to help improve overall survival with haploidentical stem cell transplant in this high risk patient population by 1) limiting the complication of graft versus host disease (GVHD), 2) enhancing post-transplant immune reconstitution, and 3) reducing non-relapse mortality.
Blood and marrow stem cell transplant has improved the outcome for patients with high-risk hematologic malignancies. However, most patients do not have an appropriate HLA (immune type) matched sibling donor available and/or are unable to identify an acceptable unrelated HLA matched donor through the registries in a timely manner. Another option is haploidentical transplant using a partially matched family member donor. Although haploidentical transplant has proven curative in many patients, this procedure has been hindered by significant complications, primarily regimen-related toxicity including graft versus host disease (GVHD) and infection due to delayed immune reconstitution. These can, in part, be due to certain white blood cells in the graft called T cells. GVHD happens when the donor T cells recognize the body tissues of the patient (the host) are different and attack these cells. Although too many T cells increase the possibility of GVHD, too few may cause the recipient's immune system to reconstitute slowly or the graft to fail to grow, leaving the patient at high-risk for significant infection. This research project will investigate the use of particular pre-transplant conditioning regimen (chemotherapy, antibodies and total body irradiation) followed by a stem cell infusion from a "mismatched" family member donor. Once these stem cells are obtained they will be highly purified in an effort to remove T cells using the investigational CliniMACS stem cell selection device. The primary goal of this study will be to determine the rate of neutrophil and platelet engraftment, as well as the degree and rate of immune reconstitution in the first 100 days posttransplant for patients who receive this study treatment. Researchers will also study ways to decrease complications that may occur with a transplant from a genetically mismatched family donor.