Intracerebral Hemorrhage Clinical Trial
— FITCHOfficial title:
Fingolimod as a Treatment of Cerebral Edema After Intracerebral Hemorrhage
Verified date | February 2024 |
Source | Wake Forest University Health Sciences |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
The purpose of this study is to test the safety and effectiveness of a single dose of fingolimod in patients with primary spontaneous intracerebral hemorrhage (ICH).
Status | Active, not recruiting |
Enrollment | 28 |
Est. completion date | June 2024 |
Est. primary completion date | June 30, 2023 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years to 80 Years |
Eligibility | Inclusion Criteria: - Has given written informed consent to participate in the study in accordance with required regulations; if a participant is not capable of providing informed consent, written consent must be obtained from the participant's legally authorized representative (LAR). - Stated willingness to comply with all study procedures and availability for the duration of the study. - Has a confirmed diagnosis of spontaneous ICH = 15 mL measured utilizing ABC/2 method using radiographic imaging (computed tomography (CT), CT angiogram (CTA), etc). The presence of cerebellar ICH is exclusionary. Presence of hydrocephalus due to mass effect an cerebral edema is not exclusionary. If the patient has hydrocephalus requiring cerebrospinal fluid (CSF) drainage, an external ventricular drain will be placed as standard of care and will not be exclusionary. - Symptoms less than 24 hours prior to enrollment if all eligibility criteria are met. An unknown time of onset is exclusionary. Use the time the patient was last known to be well for patients that awaken from sleep with symptoms. - Has Glasgow Coma Scale (GCS) score = on presentation. - Has a National Institutes of Health Stroke Scale (NIHSS) score = on presentation. - Maintenance of systolic blood pressure (SBP) < 200 mmHg at the time of enrollment and randomization. - Historical Modified Rankin Scale (mRS) score of 0 or 1. Exclusion Criteria: - Men or women < 18 years old - Incarcerated patients - ICH known as a result of trauma - Primary intraventricular hemorrhage without significant intraparenchymal component. - Ruptured aneurysm, arteriovenous malformation (AVM), vascular anomaly, Moyamoya disease, hemorrhagic conversion of an ischemic infarct, recurrence of recent (< 1 year) hemorrhage, neoplasms diagnosed with radiographic imagining. - Patients with unstable mass or evolving intracranial compartment syndrome. - Brainstem hemorrhage or irreversible impaired brain stem function (bilateral fixed, dilated pupils and extensor motor posturing), GCS = 4. - Platelet count < 100,000; INR > 1.4. - Any irreversible coagulopathy or known clotting disorder. - Various degrees of dysphagia (determined by either formal speech and swallow or bedside swallow evaluation) or nausea/vomiting that could render oral administration of fingolimod difficult. - Known history of Mobitz Type II second-degree or third-degree atrioventricular (AV) block or sick sinus syndrome. - Admission within the past 6 months for the following: myocardial infarction, unstable angina, stroke, decompensated heart failure requiring hospitalization, or Class III/IV heart failure. - Baseline QTc interval =500 ms. - Current treatment with Cass Ia or Class III anti-arrhythmic drugs. - Implanted cardiac devices that are not compatible with the desired MRI sequences needed for the study (non-contrast T1, T2, SWI/GRE, and FLAIR sequences). - Abnormal liver function or liver failure - Active acute or chronic viral infections - Active use of antineoplastic, immunosuppressive, or immunomodulating therapies. - Not expected to survive to the 180 day visit due to co-morbidities or is DNR/DNI status prior to randomization. - Active drug or alcohol use or dependence that, in the opinion of the investigator, would interfere with adherence to study requirements. - Concomitant enrollment in another interventional study. - Inability or unwillingness of participant or legal guardian/representative to give written informed consent. |
Country | Name | City | State |
---|---|---|---|
United States | Wake Forest University Health Sciences | Winston-Salem | North Carolina |
Lead Sponsor | Collaborator |
---|---|
Wake Forest University Health Sciences |
United States,
Adeoye O, Broderick JP. Advances in the management of intracerebral hemorrhage. Nat Rev Neurol. 2010 Nov;6(11):593-601. doi: 10.1038/nrneurol.2010.146. Epub 2010 Sep 28. — View Citation
Ariesen MJ, Claus SP, Rinkel GJ, Algra A. Risk factors for intracerebral hemorrhage in the general population: a systematic review. Stroke. 2003 Aug;34(8):2060-5. doi: 10.1161/01.STR.0000080678.09344.8D. Epub 2003 Jul 3. — View Citation
Aronowski J, Zhao X. Molecular pathophysiology of cerebral hemorrhage: secondary brain injury. Stroke. 2011 Jun;42(6):1781-6. doi: 10.1161/STROKEAHA.110.596718. Epub 2011 Apr 28. — View Citation
Arumugam TV, Granger DN, Mattson MP. Stroke and T-cells. Neuromolecular Med. 2005;7(3):229-42. doi: 10.1385/NMM:7:3:229. — View Citation
Babu R, Bagley JH, Di C, Friedman AH, Adamson C. Thrombin and hemin as central factors in the mechanisms of intracerebral hemorrhage-induced secondary brain injury and as potential targets for intervention. Neurosurg Focus. 2012 Apr;32(4):E8. doi: 10.3171/2012.1.FOCUS11366. — View Citation
Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B (Methodological). 1995;57(1):289-300
Boche D, Perry VH, Nicoll JA. Review: activation patterns of microglia and their identification in the human brain. Neuropathol Appl Neurobiol. 2013 Feb;39(1):3-18. doi: 10.1111/nan.12011. — View Citation
Broderick JP, Brott TG, Duldner JE, Tomsick T, Huster G. Volume of intracerebral hemorrhage. A powerful and easy-to-use predictor of 30-day mortality. Stroke. 1993 Jul;24(7):987-93. doi: 10.1161/01.str.24.7.987. — View Citation
Budde K, Schmouder RL, Brunkhorst R, Nashan B, Lucker PW, Mayer T, Choudhury S, Skerjanec A, Kraus G, Neumayer HH. First human trial of FTY720, a novel immunomodulator, in stable renal transplant patients. J Am Soc Nephrol. 2002 Apr;13(4):1073-1083. doi: 10.1681/ASN.V1341073. — View Citation
Calabresi PA, Radue EW, Goodin D, Jeffery D, Rammohan KW, Reder AT, Vollmer T, Agius MA, Kappos L, Stites T, Li B, Cappiello L, von Rosenstiel P, Lublin FD. Safety and efficacy of fingolimod in patients with relapsing-remitting multiple sclerosis (FREEDOMS II): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 2014 Jun;13(6):545-56. doi: 10.1016/S1474-4422(14)70049-3. Epub 2014 Mar 28. Erratum In: Lancet Neurol. 2013 Jun;13(6):536. — View Citation
Chiba K. FTY720, a new class of immunomodulator, inhibits lymphocyte egress from secondary lymphoid tissues and thymus by agonistic activity at sphingosine 1-phosphate receptors. Pharmacol Ther. 2005 Dec;108(3):308-19. doi: 10.1016/j.pharmthera.2005.05.002. Epub 2005 Jun 13. — View Citation
Ching T, Huang S, Garmire LX. Power analysis and sample size estimation for RNA-Seq differential expression. RNA. 2014 Nov;20(11):1684-96. doi: 10.1261/rna.046011.114. Epub 2014 Sep 22. — View Citation
Chun J, Hartung HP. Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin Neuropharmacol. 2010 Mar-Apr;33(2):91-101. doi: 10.1097/WNF.0b013e3181cbf825. — View Citation
Cohen JA, Chun J. Mechanisms of fingolimod's efficacy and adverse effects in multiple sclerosis. Ann Neurol. 2011 May;69(5):759-77. doi: 10.1002/ana.22426. — View Citation
Das A, Arifuzzaman S, Kim SH, Lee YS, Jung KH, Chai YG. FTY720 (fingolimod) regulates key target genes essential for inflammation in microglial cells as defined by high-resolution mRNA sequencing. Neuropharmacology. 2017 Jun;119:1-14. doi: 10.1016/j.neuropharm.2017.03.034. Epub 2017 Mar 31. — View Citation
David OJ, Kovarik JM, Schmouder RL. Clinical pharmacokinetics of fingolimod. Clin Pharmacokinet. 2012 Jan 1;51(1):15-28. doi: 10.2165/11596550-000000000-00000. — View Citation
Delbridge MS, Shrestha BM, Raftery AT, El Nahas AM, Haylor JL. Reduction of ischemia-reperfusion injury in the rat kidney by FTY720, a synthetic derivative of sphingosine. Transplantation. 2007 Jul 27;84(2):187-95. doi: 10.1097/01.tp.0000269794.74990.da. — View Citation
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013 Jan 1;29(1):15-21. doi: 10.1093/bioinformatics/bts635. Epub 2012 Oct 25. — View Citation
Eggen BJ, Raj D, Hanisch UK, Boddeke HW. Microglial phenotype and adaptation. J Neuroimmune Pharmacol. 2013 Sep;8(4):807-23. doi: 10.1007/s11481-013-9490-4. Epub 2013 Jul 25. — View Citation
Fogelholm R, Murros K, Rissanen A, Avikainen S. Long term survival after primary intracerebral haemorrhage: a retrospective population based study. J Neurol Neurosurg Psychiatry. 2005 Nov;76(11):1534-8. doi: 10.1136/jnnp.2004.055145. — View Citation
Fu Y, Hao J, Zhang N, Ren L, Sun N, Li YJ, Yan Y, Huang D, Yu C, Shi FD. Fingolimod for the treatment of intracerebral hemorrhage: a 2-arm proof-of-concept study. JAMA Neurol. 2014 Sep;71(9):1092-101. doi: 10.1001/jamaneurol.2014.1065. — View Citation
Fu Y, Zhang N, Ren L, Yan Y, Sun N, Li YJ, Han W, Xue R, Liu Q, Hao J, Yu C, Shi FD. Impact of an immune modulator fingolimod on acute ischemic stroke. Proc Natl Acad Sci U S A. 2014 Dec 23;111(51):18315-20. doi: 10.1073/pnas.1416166111. Epub 2014 Dec 8. — View Citation
Gao L, Lu Q, Huang LJ, Ruan LH, Yang JJ, Huang WL, ZhuGe WS, Zhang YL, Fu B, Jin KL, ZhuGe QC. Transplanted neural stem cells modulate regulatory T, gammadelta T cells and corresponding cytokines after intracerebral hemorrhage in rats. Int J Mol Sci. 2014 Mar 13;15(3):4431-41. doi: 10.3390/ijms15034431. — View Citation
Gelderblom M, Leypoldt F, Steinbach K, Behrens D, Choe CU, Siler DA, Arumugam TV, Orthey E, Gerloff C, Tolosa E, Magnus T. Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke. 2009 May;40(5):1849-57. doi: 10.1161/STROKEAHA.108.534503. Epub 2009 Mar 5. — View Citation
Groves A, Kihara Y, Chun J. Fingolimod: direct CNS effects of sphingosine 1-phosphate (S1P) receptor modulation and implications in multiple sclerosis therapy. J Neurol Sci. 2013 May 15;328(1-2):9-18. doi: 10.1016/j.jns.2013.02.011. Epub 2013 Mar 19. — View Citation
Gu L, Xiong X, Zhang H, Xu B, Steinberg GK, Zhao H. Distinctive effects of T cell subsets in neuronal injury induced by cocultured splenocytes in vitro and by in vivo stroke in mice. Stroke. 2012 Jul;43(7):1941-6. doi: 10.1161/STROKEAHA.112.656611. Epub 2012 Jun 7. — View Citation
Guo FQ, Li XJ, Chen LY, Yang H, Dai HY, Wei YS, Huang YL, Yang YS, Sun HB, Xu YC, Yang ZL. [Study of relationship between inflammatory response and apoptosis in perihematoma region in patients with intracerebral hemorrhage]. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2006 May;18(5):290-3. Chinese. — View Citation
Hasegawa Y, Suzuki H, Sozen T, Rolland W, Zhang JH. Activation of sphingosine 1-phosphate receptor-1 by FTY720 is neuroprotective after ischemic stroke in rats. Stroke. 2010 Feb;41(2):368-74. doi: 10.1161/STROKEAHA.109.568899. Epub 2009 Nov 25. — View Citation
Hendrix S, Nitsch R. The role of T helper cells in neuroprotection and regeneration. J Neuroimmunol. 2007 Mar;184(1-2):100-12. doi: 10.1016/j.jneuroim.2006.11.019. Epub 2007 Jan 2. — View Citation
Hu X, Leak RK, Shi Y, Suenaga J, Gao Y, Zheng P, Chen J. Microglial and macrophage polarization-new prospects for brain repair. Nat Rev Neurol. 2015 Jan;11(1):56-64. doi: 10.1038/nrneurol.2014.207. Epub 2014 Nov 11. — View Citation
Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, Guo Y, Stephens R, Baseler MW, Lane HC, Lempicki RA. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W169-75. doi: 10.1093/nar/gkm415. Epub 2007 Jun 18. — View Citation
Hurn PD, Subramanian S, Parker SM, Afentoulis ME, Kaler LJ, Vandenbark AA, Offner H. T- and B-cell-deficient mice with experimental stroke have reduced lesion size and inflammation. J Cereb Blood Flow Metab. 2007 Nov;27(11):1798-805. doi: 10.1038/sj.jcbfm.9600482. Epub 2007 Mar 28. — View Citation
Jin Y, Zollinger M, Borell H, Zimmerlin A, Patten CJ. CYP4F enzymes are responsible for the elimination of fingolimod (FTY720), a novel treatment of relapsing multiple sclerosis. Drug Metab Dispos. 2011 Feb;39(2):191-8. doi: 10.1124/dmd.110.035378. Epub 2010 Nov 2. — View Citation
Kanazawa M, Ninomiya I, Hatakeyama M, Takahashi T, Shimohata T. Microglia and Monocytes/Macrophages Polarization Reveal Novel Therapeutic Mechanism against Stroke. Int J Mol Sci. 2017 Oct 13;18(10):2135. doi: 10.3390/ijms18102135. — View Citation
Kappos L, Radue EW, O'Connor P, Polman C, Hohlfeld R, Calabresi P, Selmaj K, Agoropoulou C, Leyk M, Zhang-Auberson L, Burtin P; FREEDOMS Study Group. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med. 2010 Feb 4;362(5):387-401. doi: 10.1056/NEJMoa0909494. Epub 2010 Jan 20. — View Citation
Keep RF, Hua Y, Xi G. Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol. 2012 Aug;11(8):720-31. doi: 10.1016/S1474-4422(12)70104-7. Epub 2012 Jun 13. — View Citation
Kivisakk P, Mahad DJ, Callahan MK, Trebst C, Tucky B, Wei T, Wu L, Baekkevold ES, Lassmann H, Staugaitis SM, Campbell JJ, Ransohoff RM. Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8389-94. doi: 10.1073/pnas.1433000100. Epub 2003 Jun 26. — View Citation
Kovarik JM, Schmouder R, Barilla D, Wang Y, Kraus G. Single-dose FTY720 pharmacokinetics, food effect, and pharmacological responses in healthy subjects. Br J Clin Pharmacol. 2004 May;57(5):586-91. doi: 10.1111/j.1365-2125.2003.02065.x. — View Citation
Kramer A, Green J, Pollard J Jr, Tugendreich S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics. 2014 Feb 15;30(4):523-30. doi: 10.1093/bioinformatics/btt703. Epub 2013 Dec 13. — View Citation
Lan X, Han X, Li Q, Yang QW, Wang J. Modulators of microglial activation and polarization after intracerebral haemorrhage. Nat Rev Neurol. 2017 Jul;13(7):420-433. doi: 10.1038/nrneurol.2017.69. Epub 2017 May 19. — View Citation
Lawson LJ, Perry VH, Dri P, Gordon S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience. 1990;39(1):151-70. doi: 10.1016/0306-4522(90)90229-w. — View Citation
Lee CW, Choi JW, Chun J. Neurological S1P signaling as an emerging mechanism of action of oral FTY720 (fingolimod) in multiple sclerosis. Arch Pharm Res. 2010 Oct;33(10):1567-74. doi: 10.1007/s12272-010-1008-5. Epub 2010 Oct 30. — View Citation
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014 Apr 1;30(7):923-30. doi: 10.1093/bioinformatics/btt656. Epub 2013 Nov 13. — View Citation
Liesz A, Suri-Payer E, Veltkamp C, Doerr H, Sommer C, Rivest S, Giese T, Veltkamp R. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med. 2009 Feb;15(2):192-9. doi: 10.1038/nm.1927. Epub 2009 Jan 25. — View Citation
Loftspring MC, McDole J, Lu A, Clark JF, Johnson AJ. Intracerebral hemorrhage leads to infiltration of several leukocyte populations with concomitant pathophysiological changes. J Cereb Blood Flow Metab. 2009 Jan;29(1):137-43. doi: 10.1038/jcbfm.2008.114. Epub 2008 Oct 1. — View Citation
Lord AS, Gilmore E, Choi HA, Mayer SA; VISTA-ICH Collaboration. Time course and predictors of neurological deterioration after intracerebral hemorrhage. Stroke. 2015 Mar;46(3):647-52. doi: 10.1161/STROKEAHA.114.007704. Epub 2015 Feb 5. — View Citation
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8. — View Citation
Lu L, Barfejani AH, Qin T, Dong Q, Ayata C, Waeber C. Fingolimod exerts neuroprotective effects in a mouse model of intracerebral hemorrhage. Brain Res. 2014 Mar 25;1555:89-96. doi: 10.1016/j.brainres.2014.01.048. Epub 2014 Feb 3. — View Citation
Man K, Ng KT, Lee TK, Lo CM, Sun CK, Li XL, Zhao Y, Ho JW, Fan ST. FTY720 attenuates hepatic ischemia-reperfusion injury in normal and cirrhotic livers. Am J Transplant. 2005 Jan;5(1):40-9. doi: 10.1111/j.1600-6143.2004.00642.x. Erratum In: Am J Transplant. 2017 Mar;17 (3):845. — View Citation
Mao LL, Yuan H, Wang WW, Wang YJ, Yang MF, Sun BL, Zhang ZY, Yang XY. Adoptive Regulatory T-cell Therapy Attenuates Perihematomal Inflammation in a Mouse Model of Experimental Intracerebral Hemorrhage. Cell Mol Neurobiol. 2017 Jul;37(5):919-929. doi: 10.1007/s10571-016-0429-1. Epub 2016 Sep 27. — View Citation
Melendez AJ. Sphingosine kinase signalling in immune cells: potential as novel therapeutic targets. Biochim Biophys Acta. 2008 Jan;1784(1):66-75. doi: 10.1016/j.bbapap.2007.07.013. Epub 2007 Aug 14. — View Citation
Mendelow AD, Gregson BA, Rowan EN, Murray GD, Gholkar A, Mitchell PM; STICH II Investigators. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): a randomised trial. Lancet. 2013 Aug 3;382(9890):397-408. doi: 10.1016/S0140-6736(13)60986-1. Epub 2013 May 29. Erratum In: Lancet. 2013 Aug 3;382(9890):396. Lancet. 2021 Sep 18;398(10305):1042. — View Citation
Morgenstern LB, Hemphill JC 3rd, Anderson C, Becker K, Broderick JP, Connolly ES Jr, Greenberg SM, Huang JN, MacDonald RL, Messe SR, Mitchell PH, Selim M, Tamargo RJ; American Heart Association Stroke Council and Council on Cardiovascular Nursing. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2010 Sep;41(9):2108-29. doi: 10.1161/STR.0b013e3181ec611b. Epub 2010 Jul 22. — View Citation
Mould WA, Carhuapoma JR, Muschelli J, Lane K, Morgan TC, McBee NA, Bistran-Hall AJ, Ullman NL, Vespa P, Martin NA, Awad I, Zuccarello M, Hanley DF; MISTIE Investigators. Minimally invasive surgery plus recombinant tissue-type plasminogen activator for intracerebral hemorrhage evacuation decreases perihematomal edema. Stroke. 2013 Mar;44(3):627-34. doi: 10.1161/STROKEAHA.111.000411. Epub 2013 Feb 7. — View Citation
Mracsko E, Veltkamp R. Neuroinflammation after intracerebral hemorrhage. Front Cell Neurosci. 2014 Nov 20;8:388. doi: 10.3389/fncel.2014.00388. eCollection 2014. — View Citation
Murthy SB, Moradiya Y, Shah J, Merkler AE, Mangat HS, Iadacola C, Hanley DF, Kamel H, Ziai WC. Nosocomial Infections and Outcomes after Intracerebral Hemorrhage: A Population-Based Study. Neurocrit Care. 2016 Oct;25(2):178-84. doi: 10.1007/s12028-016-0282-6. — View Citation
Nayak D, Huo Y, Kwang WX, Pushparaj PN, Kumar SD, Ling EA, Dheen ST. Sphingosine kinase 1 regulates the expression of proinflammatory cytokines and nitric oxide in activated microglia. Neuroscience. 2010 Mar 10;166(1):132-44. doi: 10.1016/j.neuroscience.2009.12.020. Epub 2009 Dec 28. — View Citation
Noda H, Takeuchi H, Mizuno T, Suzumura A. Fingolimod phosphate promotes the neuroprotective effects of microglia. J Neuroimmunol. 2013 Mar 15;256(1-2):13-8. doi: 10.1016/j.jneuroim.2012.12.005. Epub 2013 Jan 3. — View Citation
Okada T, Kajimoto T, Jahangeer S, Nakamura S. Sphingosine kinase/sphingosine 1-phosphate signalling in central nervous system. Cell Signal. 2009 Jan;21(1):7-13. doi: 10.1016/j.cellsig.2008.07.011. Epub 2008 Jul 22. — View Citation
Qin C, Fan WH, Liu Q, Shang K, Murugan M, Wu LJ, Wang W, Tian DS. Fingolimod Protects Against Ischemic White Matter Damage by Modulating Microglia Toward M2 Polarization via STAT3 Pathway. Stroke. 2017 Dec;48(12):3336-3346. doi: 10.1161/STROKEAHA.117.018505. Epub 2017 Nov 7. — View Citation
Qureshi AI, Mendelow AD, Hanley DF. Intracerebral haemorrhage. Lancet. 2009 May 9;373(9675):1632-44. doi: 10.1016/S0140-6736(09)60371-8. — View Citation
Qureshi AI, Suri MF, Nasar A, Kirmani JF, Ezzeddine MA, Divani AA, Giles WH. Changes in cost and outcome among US patients with stroke hospitalized in 1990 to 1991 and those hospitalized in 2000 to 2001. Stroke. 2007 Jul;38(7):2180-4. doi: 10.1161/STROKEAHA.106.467506. Epub 2007 May 24. — View Citation
Rolland WB, Lekic T, Krafft PR, Hasegawa Y, Altay O, Hartman R, Ostrowski R, Manaenko A, Tang J, Zhang JH. Fingolimod reduces cerebral lymphocyte infiltration in experimental models of rodent intracerebral hemorrhage. Exp Neurol. 2013 Mar;241:45-55. doi: 10.1016/j.expneurol.2012.12.009. Epub 2012 Dec 21. — View Citation
Rothhammer V, Kenison JE, Tjon E, Takenaka MC, de Lima KA, Borucki DM, Chao CC, Wilz A, Blain M, Healy L, Antel J, Quintana FJ. Sphingosine 1-phosphate receptor modulation suppresses pathogenic astrocyte activation and chronic progressive CNS inflammation. Proc Natl Acad Sci U S A. 2017 Feb 21;114(8):2012-2017. doi: 10.1073/pnas.1615413114. Epub 2017 Feb 6. — View Citation
Shichita T, Sakaguchi R, Suzuki M, Yoshimura A. Post-ischemic inflammation in the brain. Front Immunol. 2012 May 31;3:132. doi: 10.3389/fimmu.2012.00132. eCollection 2012. — View Citation
Sucksdorff M, Rissanen E, Tuisku J, Nuutinen S, Paavilainen T, Rokka J, Rinne J, Airas L. Evaluation of the Effect of Fingolimod Treatment on Microglial Activation Using Serial PET Imaging in Multiple Sclerosis. J Nucl Med. 2017 Oct;58(10):1646-1651. doi: 10.2967/jnumed.116.183020. Epub 2017 Mar 23. — View Citation
Sun N, Shen Y, Han W, Shi K, Wood K, Fu Y, Hao J, Liu Q, Sheth KN, Huang D, Shi FD. Selective Sphingosine-1-Phosphate Receptor 1 Modulation Attenuates Experimental Intracerebral Hemorrhage. Stroke. 2016 Jul;47(7):1899-906. doi: 10.1161/STROKEAHA.115.012236. Epub 2016 May 12. — View Citation
Taylor RA, Sansing LH. Microglial responses after ischemic stroke and intracerebral hemorrhage. Clin Dev Immunol. 2013;2013:746068. doi: 10.1155/2013/746068. Epub 2013 Oct 10. — View Citation
Tham CS, Lin FF, Rao TS, Yu N, Webb M. Microglial activation state and lysophospholipid acid receptor expression. Int J Dev Neurosci. 2003 Dec;21(8):431-43. doi: 10.1016/j.ijdevneu.2003.09.003. — View Citation
Theodorou GL, Marousi S, Ellul J, Mougiou A, Theodori E, Mouzaki A, Karakantza M. T helper 1 (Th1)/Th2 cytokine expression shift of peripheral blood CD4+ and CD8+ T cells in patients at the post-acute phase of stroke. Clin Exp Immunol. 2008 Jun;152(3):456-63. doi: 10.1111/j.1365-2249.2008.03650.x. Epub 2008 Apr 16. — View Citation
van Asch CJ, Luitse MJ, Rinkel GJ, van der Tweel I, Algra A, Klijn CJ. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol. 2010 Feb;9(2):167-76. doi: 10.1016/S1474-4422(09)70340-0. Epub 2010 Jan 5. — View Citation
Wang J, Dore S. Inflammation after intracerebral hemorrhage. J Cereb Blood Flow Metab. 2007 May;27(5):894-908. doi: 10.1038/sj.jcbfm.9600403. Epub 2006 Oct 11. — View Citation
Wang J. Preclinical and clinical research on inflammation after intracerebral hemorrhage. Prog Neurobiol. 2010 Dec;92(4):463-77. doi: 10.1016/j.pneurobio.2010.08.001. Epub 2010 Aug 14. — View Citation
Wasserman JK, Zhu X, Schlichter LC. Evolution of the inflammatory response in the brain following intracerebral hemorrhage and effects of delayed minocycline treatment. Brain Res. 2007 Nov 14;1180:140-54. doi: 10.1016/j.brainres.2007.08.058. Epub 2007 Sep 5. — View Citation
Wei Y, Yemisci M, Kim HH, Yung LM, Shin HK, Hwang SK, Guo S, Qin T, Alsharif N, Brinkmann V, Liao JK, Lo EH, Waeber C. Fingolimod provides long-term protection in rodent models of cerebral ischemia. Ann Neurol. 2011 Jan;69(1):119-29. doi: 10.1002/ana.22186. Epub 2010 Nov 12. — View Citation
WRITING GROUP MEMBERS; Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, Ferguson TB, Ford E, Furie K, Gillespie C, Go A, Greenlund K, Haase N, Hailpern S, Ho PM, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott MM, Meigs J, Mozaffarian D, Mussolino M, Nichol G, Roger VL, Rosamond W, Sacco R, Sorlie P, Roger VL, Thom T, Wasserthiel-Smoller S, Wong ND, Wylie-Rosett J; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics--2010 update: a report from the American Heart Association. Circulation. 2010 Feb 23;121(7):e46-e215. doi: 10.1161/CIRCULATIONAHA.109.192667. Epub 2009 Dec 17. No abstract available. Erratum In: Circulation. 2010 Mar 30;121(12):e260. Stafford, Randall [corrected to Roger, Veronique L]. Circulation. 2011 Oct 18;124(16):e425. — View Citation
Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006 Jan;5(1):53-63. doi: 10.1016/S1474-4422(05)70283-0. — View Citation
Xiong XY, Liu L, Yang QW. Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke. Prog Neurobiol. 2016 Jul;142:23-44. doi: 10.1016/j.pneurobio.2016.05.001. Epub 2016 May 7. — View Citation
Yilmaz G, Arumugam TV, Stokes KY, Granger DN. Role of T lymphocytes and interferon-gamma in ischemic stroke. Circulation. 2006 May 2;113(17):2105-12. doi: 10.1161/CIRCULATIONAHA.105.593046. Epub 2006 Apr 24. — View Citation
Zhang Z, Zhang Z, Lu H, Yang Q, Wu H, Wang J. Microglial Polarization and Inflammatory Mediators After Intracerebral Hemorrhage. Mol Neurobiol. 2017 Apr;54(3):1874-1886. doi: 10.1007/s12035-016-9785-6. Epub 2016 Feb 19. — View Citation
Zhao H, Garton T, Keep RF, Hua Y, Xi G. Microglia/Macrophage Polarization After Experimental Intracerebral Hemorrhage. Transl Stroke Res. 2015 Dec;6(6):407-9. doi: 10.1007/s12975-015-0428-4. Epub 2015 Oct 7. No abstract available. — View Citation
Zhou K, Zhong Q, Wang YC, Xiong XY, Meng ZY, Zhao T, Zhu WY, Liao MF, Wu LR, Yang YR, Liu J, Duan CM, Li J, Gong QW, Liu L, Yang MH, Xiong A, Wang J, Yang QW. Regulatory T cells ameliorate intracerebral hemorrhage-induced inflammatory injury by modulating microglia/macrophage polarization through the IL-10/GSK3beta/PTEN axis. J Cereb Blood Flow Metab. 2017 Mar;37(3):967-979. doi: 10.1177/0271678X16648712. Epub 2016 Jul 20. — View Citation
Zhou Y, Wang Y, Wang J, Anne Stetler R, Yang QW. Inflammation in intracerebral hemorrhage: from mechanisms to clinical translation. Prog Neurobiol. 2014 Apr;115:25-44. doi: 10.1016/j.pneurobio.2013.11.003. Epub 2013 Nov 26. — View Citation
Zhu Z, Fu Y, Tian D, Sun N, Han W, Chang G, Dong Y, Xu X, Liu Q, Huang D, Shi FD. Combination of the Immune Modulator Fingolimod With Alteplase in Acute Ischemic Stroke: A Pilot Trial. Circulation. 2015 Sep 22;132(12):1104-1112. doi: 10.1161/CIRCULATIONAHA.115.016371. Epub 2015 Jul 22. — View Citation
Zollinger M, Gschwind HP, Jin Y, Sayer C, Zecri F, Hartmann S. Absorption and disposition of the sphingosine 1-phosphate receptor modulator fingolimod (FTY720) in healthy volunteers: a case of xenobiotic biotransformation following endogenous metabolic pathways. Drug Metab Dispos. 2011 Feb;39(2):199-207. doi: 10.1124/dmd.110.035907. Epub 2010 Nov 2. — View Citation
* Note: There are 85 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Rate of clinically significant cardiac events | up to 30 days post-ictus | ||
Primary | Rate of nosocomial infections (UTI, sepsis, and pneumonia) | nosocomial infections (UTI, sepsis, and pneumonia) | up to 90 days post-ictus | |
Primary | Rate of neurologic decline | considered a change = 4 points of the NIHSS | up to 30 days post-ictus | |
Secondary | Change in lymphocyte subpopulations | The lymphocyte subsets of CD4+ T, CD8+ T, and CD19+ B cells will be compared between the two treatment groups and the trends will be followed over time in all participants. | 30 days | |
Secondary | Hematoma volume - CT | Volumetric measurement calculations of hematoma will be obtained from radiographic imaging (CT). | Enrollment | |
Secondary | Peri-hematomal edema volume - CT | Volumetric measurement calculations of peri-hematoma will be obtained from radiographic imaging (CT). | Enrollment | |
Secondary | Hematoma volume - MRI | Volumetric measurement calculations of hematoma will be obtained from radiographic imaging (MRI). | Enrollment | |
Secondary | Peri-hematomal edema volume - MRI | Volumetric measurement calculations of the peri-hematoma area will be obtained from radiographic imaging (MRI). | Enrollment | |
Secondary | Hematoma volume- CT | Volumetric measurement calculations of hematoma will be obtained from radiographic imaging (CT). | 24 hours post-ictus | |
Secondary | Peri-hematomal edema volume- CT | Volumetric measurement calculations of peri-hematoma will be obtained from radiographic imaging (CT). | 24 hours post-ictus | |
Secondary | Hematoma volume - MRI | Volumetric measurement calculations of hematoma will be obtained from radiographic imaging (MRI). | 72 hours post-ictus | |
Secondary | Peri-hematomal edema volume - MRI | Volumetric measurement calculations of peri-hematoma will be obtained from radiographic imaging (MRI). | 72 hours post-ictus | |
Secondary | Hematoma volume - CT | Volumetric measurement calculations of hematoma will be obtained from radiographic imaging (CT). | Between days 5 to 7 post-ictus | |
Secondary | Peri-hematomal edema volume - CT | Volumetric measurement calculations of peri-hematoma will be obtained from radiographic imaging (CT). | Between days 5 to 7 post-ictus | |
Secondary | Hematoma volume - CT | Volumetric measurement calculations of hematoma will be obtained from radiographic imaging (CT). | Between days 10 to 14 post-ictus | |
Secondary | Peri-hematomal edema volume - CT | Volumetric measurement calculations of peri-hematoma will be obtained from radiographic imaging (CT). | Between days 10 to 14 post-ictus | |
Secondary | Hematomal volume- MRI | Volumetric measurement calculations of hematoma will be obtained from radiographic imaging (MRI). | Follow-Up visit 1 - Between days 16 to 44 | |
Secondary | Peri-hematomal edema volume- MRI | Volumetric measurement calculations of peri-hematoma will be obtained from radiographic imaging (MRI). | Follow-Up visit 1 - Between days 16 to 44 | |
Secondary | Hematoma volume- CT | Volumetric measurement calculations of hematoma will be obtained from radiographic imaging (CT). | Follow-Up visit 2- Between days 76 to 104 | |
Secondary | Peri-hematomal edema volume- CT | Volumetric measurement calculations of peri- hematoma will be obtained from radiographic imaging (CT). | Follow-Up visit 2- Between days 76 to 104 | |
Secondary | Hematoma volume- CT | Volumetric measurement calculations of hematoma will be obtained from radiographic imaging (CT). | Follow-Up visit 4 Between days 351 and 379 | |
Secondary | Peri-hematomal edema volume- CT | Volumetric measurement calculations of peri-hematoma will be obtained from radiographic imaging (CT). | Follow-Up visit 4 Between days 351 and 379 | |
Secondary | National Institutes of Health Stroke Scale | As per ischemia stroke criteria, a change = 4 in the NIHSS will be considered a neurologic change and will be followed over time. 0 being normal functioning and 4 being completely impaired. Lower scores denote better outcome. | 365 days | |
Secondary | Interviewer-administered Modified Rankin Scale (mRS) | The modified Rankin Scale (mRS) will measure functional recovery and ability to perform activities of daily living. The mRS is a 6 point disability scale with scores ranging from 0 (no symptoms) to 5 (severe disability). Lower scores denote better outcome. | 365 days post-ictus | |
Secondary | Patient-Reported Outcomes Measurement Information (PROMIS) 10 questionnaire | Patient-Reported Outcomes Measurement Information System (PROMIS) 10 questionnaire will measure patient self reporting of physical and neurobehavioral functions.Qualitative methods will be used to analyze this data. | up to 365 days | |
Secondary | Montreal Cognitive Assessment (MoCA) | Montreal Cognitive Assessment (MoCA) will measure recovery (neurocognitive). Scores range from 0 to 30 with higher scores denoting better outcomes. | up to 365 days | |
Secondary | Western Aphasia Battery-Revised (WAB-R) | Western Aphasia Battery-Revised (WAB-R) will measure recovery (neurocognitive and speech). Scores range from 0 to 76+. Higher scores denote better outcome. | up to 365 days | |
Secondary | Mortality | 30 days | ||
Secondary | Mortality | 90 days | ||
Secondary | All cause mortality | up to 365 days | ||
Secondary | Number of home days | This will be an assessment of the participant's discharge disposition, followed by length of stay at a facility (inpatient rehabilitation, skilled nursing facility, assisted living facility), compared to number of days at home. | up to 365 days |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05089331 -
ROSE-Longitudinal Assessment With Neuroimaging
|
||
Recruiting |
NCT03605381 -
MORbidity PRevalence Estimate In StrokE
|
||
Active, not recruiting |
NCT04522102 -
Antiplatelet Secondary Prevention International Randomised Trial After INtracerebral haemorrhaGe (ASPIRING)-Pilot Phase
|
Phase 3 | |
Terminated |
NCT04178746 -
PRONTO: Artemis in the Removal of Intraventricular Hemorrhage in the Hyper-Acute Phase
|
||
Not yet recruiting |
NCT03956485 -
Multicentre Registry of Patients With Spontaneous Acute Intracerebral Hemorrhage in Catalonia (HIC-CAT).
|
||
Enrolling by invitation |
NCT02920645 -
Multicenter Validation of the AVICH Score
|
N/A | |
Recruiting |
NCT02625948 -
Tranexamic Acid for Acute ICH Growth prEdicted by Spot Sign
|
Phase 2 | |
Completed |
NCT02478177 -
Addressing Real-world Anticoagulant Management Issues in Stroke
|
||
Completed |
NCT01971359 -
Clinical Outcomes Following Parafascicular Surgical Evacuation of Intracerebral Hemorrhage: A Pilot Study
|
N/A | |
Completed |
NCT01261091 -
Early Tracheostomy in Ventilated Stroke Patients
|
N/A | |
Terminated |
NCT00990509 -
Albumin for Intracerebral Hemorrhage Intervention
|
Phase 2 | |
Completed |
NCT00716079 -
The Second Intensive Blood Pressure Reduction in Acute Cerebral Haemorrhage Trial
|
N/A | |
Recruiting |
NCT00222625 -
rFVIIa in ICH in Patients Treated With Anticoagulants or Anti-Platelets
|
Phase 2 | |
Recruiting |
NCT05095857 -
The Anesthetic Ketamine as Treatment for Patients With Severe Acute Brain Injury
|
Phase 4 | |
Recruiting |
NCT04548596 -
NOninVasive Intracranial prEssure From Transcranial doppLer Ultrasound Development of a Comprehensive Database of Multimodality Monitoring Signals for Brain-Injured Patients
|
||
Not yet recruiting |
NCT06429332 -
International Care Bundle Evaluation in Cerebral Hemorrhage Research
|
Phase 4 | |
Recruiting |
NCT05492474 -
Cranial Ultrasound for Prehospital ICH Diagnosis
|
N/A | |
Not yet recruiting |
NCT05502874 -
Multicenter Registry for Assessment of Markers of Early Neurological Deterioration in Primary Intracerebral Hemorrhage
|
||
Recruiting |
NCT04604587 -
MRI-visible Enlarged Perivascular Spaces and the Alteration of Lymphatic Drainage System in CAA
|
Phase 3 | |
Recruiting |
NCT05504941 -
Detection of an Endovascular Treatment Target in Patients With an Acute, Spontaneous Intracerebral Hemorrhage
|
N/A |