Clinical Trials Logo

Clinical Trial Summary

This study is designed to calibrate and determine the accuracy for SpO2, pulse rate and respiratory rate of the newly in-house build Test Device wrist 1 (TDw1, or EVA) at Philips. SpO2, pulse rate and respiratory rate during hypoxia will be calculated by using data of well-known reference devices, including: - A reference SpO2 sensor of Nellcor placed at a fingertip, that reflects also continuously the pulse rate Will be used to compare with the test device. - A reference respiratory rate device that calculates the respiratory rate based on detection of end-tidal CO2 peaks by capnography. - Oxygen saturation in arterial blood samples (SaO2), determined by a co-oximeter will be used to calculate the accuracy of the test device. During the study the following devices will be additionally used by the volunteers: - AppleWatch 7 - TDw2, watch build by philips, using the PPG and software technology developed by Philips - A smartphone that detects reflected PPG signals from the reflected screen at the handpalm, by the build in frontfacing camera (TDc) of the smartphone Volunteers will undergo progressive hypoxia (9 min/% O2) from 21 to 10% O2 in an altitude room, resulting in a volunteer's SpO2 of 73%. During this deliberated hypoxia, the volunteers wear the test and reference devices. This study consists of 4 sub-studies (NI = non-invasive; IN = invasive with an arterial line): - NI (Fast-Sitting): volunteers are seated in the hypoxia room in which the ambient oxygen concentration decreases at a speed of 9 min/% O2. If the volunteer reached a SpO2 ≤73% for more than 1 minute, he/she leaves the hypoxia room. And will breath air with 21% oxygen. Volunteers wear TDw1 and TDw2 and the reference devices. - NI(Fast-Lying): identical to NI(Fast-Sitting) but volunteers lay on a mattress. Volunteers wear TDw1 and AppleWatch 7 and the reference devices. - NI (Slow-Sitting): identical to NI (Fast-Sitting), but after one of the volunteers reaches a SpO2 ≤73% for more than one minute, oxygen in the room increases at a speed of 9 min/% O2 until normal ambient air oxygen concentration of 21%. Volunteers wear TDw1 and AppleWatch 7 and the reference devices. - IN(Fast-Sitting): identical to NI(Fast-Sitting) but the volunteer's oxygen saturation in blood samples withdrawn via an arterial line is measured in the laboratory. The NI studies include 18 healthy participants in each sub-study. After the first volunteers have completed the study, small adaptations in the software of the study devices is still possible, e.g. to increase the quality of the PPG-signals. After the three sub-studies are completed, the algorithm for conversion of raw PPG signals to SpO2, pulse rate and respiratory rate will be defined and fixed for the test devices. During the IN-study, which can only be started after completion of all NI studies, an arterial catheter will be inserted in the radial artery of the 12 participating volunteers, in order to take several blood samples to measure oxygen saturation in the blood (25 samples at well-defined moments during the study per volunteer). Using these results of arterial oxygen saturation, the accuracy of the test devices can be calculated.


Clinical Trial Description

n/a


Study Design


Related Conditions & MeSH terms


NCT number NCT05790616
Study type Interventional
Source Philips Clinical & Medical Affairs Global
Contact Daphne van Scheppingen
Phone +316 3857 3076
Email daphne.van.scheppingen@philips.com
Status Recruiting
Phase N/A
Start date January 28, 2023
Completion date November 1, 2023

See also
  Status Clinical Trial Phase
Recruiting NCT04498598 - Structural Modification In Supraglottic Airway Device N/A
Completed NCT05532670 - N600X Low Saturation Accuracy Validation
Enrolling by invitation NCT04106401 - Intravascular Volumes in Hypoxia During Antarctic Confinement N/A
Recruiting NCT05883137 - High-flow Nasal Oxygenation for Apnoeic Oxygenation During Intubation of the Critically Ill
Not yet recruiting NCT05817448 - Hypoxia-induced Autophagy in the Pathogenesis of MAP
Recruiting NCT02661152 - DAHANCA 30: A Randomized Non-inferiority Trial of Hypoxia-profile Guided Hypoxic Modification of Radiotherapy of HNSCC. Phase 3
Terminated NCT02801162 - Evaluation of Accuracy and Precision of a New Arterial Blood Gas Analysis System Blood in Comparison With the Reference Standard N/A
Not yet recruiting NCT02201875 - Intrinsic Periodic Pattern of Breathing N/A
Completed NCT02943863 - Regional Ventilation During High Flow Nasal Cannula and Conventional Nasal Cannula in Patients With Hypoxia N/A
Completed NCT01922401 - Inverse Ratio Ventilation on Bariatric Operation N/A
Completed NCT02105298 - Effect of Volume and Type of Fluid on Postoperative Incidence of Respiratory Complications and Outcome (CRC-Study) N/A
Active, not recruiting NCT01681238 - Goal-directed Therapy in High-risk Surgery N/A
Completed NCT01463527 - Using Capnography to Reduce Hypoxia During Pediatric Sedation N/A
Completed NCT01507623 - Value of Capnography During Nurse Administered Propofol Sedation (NAPS) N/A
Withdrawn NCT00638040 - The Gene Expression Studies of the Role of Tumor Microenvironments in Tumor Progression N/A
Active, not recruiting NCT06097754 - Intermittent Exogenous Ketosis (IEK) at High Altitude N/A
Completed NCT04589923 - The VISION-Acute Study
Completed NCT05044585 - Evaluation of RDS MultiSense® in Desaturation Analysis in Healthy Volunteers N/A
Completed NCT03659513 - The Effect of ECMO on the Pharmacokinetics of the Drugs and Their Clinical Efficacy
Completed NCT03221387 - Sleep and Daytime Use of Humidified Nasal High-flow Oxygen in COPD Outpatients N/A