Clinical Trials Logo

Hyperoxia clinical trials

View clinical trials related to Hyperoxia.

Filter by:
  • Terminated  
  • Page 1

NCT ID: NCT04546568 Terminated - Hypoxia Clinical Trials

SCO2T (Servo vs. Servo)

Start date: August 10, 2020
Phase: N/A
Study type: Interventional

Most premature babies require oxygen therapy. There is uncertainty about what oxygen levels are the best. The oxygen levels in the blood are measured using a monitor called a saturation monitor and the oxygen the baby breathes is adjusted to keep the level in a target range. Although there is evidence that lower oxygen levels maybe harmful, it is not known how high they need to be for maximum benefit. Very high levels are also harmful. Saturation monitors are not very good for checking for high oxygen levels. For this a different kind of monitor, called a transcutaneous monitor, is better. Keeping oxygen levels stable is usually done by nurses adjusting the oxygen levels by hand (manual control). There is also equipment available that can do this automatically (servo control). It is not known which is best. Studies of automated control have shown that infants spend more time within their intended target oxygen saturation range. These have not included measurements of transcutaneous oxygen. There are no previous studies directly comparing automated respiratory devices. The investigators aim to show the transcutaneous oxygen levels as well as the oxygen saturation levels when babies have their oxygen adjusted using two automated (servo) control devices delivering nasal high flow. For a period of 12 hours each baby will have their oxygen adjusted automatically using each devices for 6 hours respectively. The investigators will compare the range of oxygen levels that are seen between the two respiratory devices.

NCT ID: NCT03877198 Terminated - Hypoxia Clinical Trials

Comparison of Oxygen Controllers in Preterm InfanTs

COCkPIT
Start date: February 19, 2019
Phase: N/A
Study type: Interventional

Premature infants often receive respiratory support and supplemental oxygen for a prolonged period of time during their admission in the NICU. While maintaining the oxygen saturation within a narrow target range is important to prevent morbidity, manual oxygen titration can be very challenging. Automatic titration by a controller has been proven to be more effective. However, to date the performance of different controllers has not been compared. The proposed randomized crossover trial Comparing Oxygen Controllers in Preterm InfanTs (COCkPIT) is designed to compare the effect on time spent within target range. The results of this trial will help determining which algorithm is most successful in controlling oxygen, improve future developments in automated oxygen control and ultimately reduce the morbidity associated with hypoxemia and hyperoxemia.

NCT ID: NCT03550469 Terminated - Hypoxia Clinical Trials

Computer-assisted Oxygen Therapy Weaning in Critically Ill Children

Start date: November 2, 2018
Phase: N/A
Study type: Interventional

The study is designed to evaluate the feasibility, safety and clinical utility of using an adaptive model to wean oxygen by computer assistance. Investigators hypothesize that weaning oxygen using this model will decrease duration of exposure to hyperoxia, decrease duration of exposure to hypoxia, decrease exposure to increased oxygen requirement, and decrease the number of manual fraction of inspired oxygen (FiO2) adjustments as compared to manual weaning of oxygen therapy.

NCT ID: NCT00887731 Terminated - Clinical trials for Respiratory Distress Syndrome

Clinical Evaluation of a Closed Loop Oxygen Controller for Neonatal Respiratory Care

Start date: August 2009
Phase: N/A
Study type: Observational

Nearly forty years ago Berran and coworkers tested an analog oxygen controller to maintain incubator oxygen levels for infants suffering neonatal respiratory disease in order to prevent hyperoxia. There are at least three clinical issues that this technology addresses: the first is avoidance of episodic hyperoxia; the second is decreasing episodic hypoxia; and the third is lowering cumulative oxygen exposure. Clinical trials which have used target SpO2 ranging probably help improve all of these problems, but so far there have been no direct measurements of continuous arterial oxygen levels, nor clinical studies which establish the degree to which improving control over blood oxygen saturation decreases the cumulative amount of oxygen exposure. This study will address the later and is an important step in the process of incorporating closed-loop oxygen control technology as a routine standard of neonatal respiratory care. OBJECTIVES: PART 1: Test and modify the instruction set for the computerized oxygen controller to achieve a goal of less than six (6) operator required interruptions per hour for oxygen saturation deviations outside of study guidelines. PART 2: Perform a within patient cross-over trial of the computerized oxygen controller versus standard of care (the patient's care team adjusts the patient's oxygen level) and evaluate the area under the time curve for oxygen exposure between the two control methods. PART 3:(After successful completion of PART 2) Continuation of the within patient cross-over study with a randomized cross-over sequence. Studies will last 4 to 12 hours divided in two (2) equal time blocks with one cross-over to either automatic or manual control modes. Provision for up to an additional twenty (20) patients to be studied.