Clinical Trials Logo

Clinical Trial Summary

In recent decades, the world prevalence of obesity and type 2 diabetes (DMT2) has increased dramatically, resulting in a global epidemic. One of the aspects more connected to the etiology of these pathologies is undoubtedly the concept of the glycemic index (GI) and glycemic load (CG). It has been shown that, with the same CG, that is of carbohydrates contained in a food, a food with a higher GI tends to raise blood sugar more quickly (and consequently insulin), causing several negative effects on the body. We now have sufficient evidence to show that high GI diets are associated with increased incidence of DMT2, hyperlipoproteinemia, and cardiovascular disease. Although simple carbohydrates, namely sugars, have always been considered the major inducers of hyperglycemia and hyperinsulinemia, in reality also starches, or complex carbohydrates digestible by humans, may lead to an increase in blood sugar levels which is not as rapid but often equally harmful to health, since the GC is generally higher. The reason why a high GI diet is responsible for this increased risk of developing pathologies is not unambiguous. We can identify at least 4 probable mechanisms. 1. Sudden hyperglycemia tends to cause insulin to rise beyond what is necessary, leading subsequently to the risk of hypoglycemia and thus an excessive feeling of hunger. Increased energy intake and obesity. 2. Excess insulin secretion, aggravated by insulin resistance, represents an effort for the pancreas with the risk, over time, to arrive at a deficit of insulin-dependent diabetes type 2 insulin production 3. Hyperinsulinemia is also associated with reduced lipolysis and increased lipogenesis obesity and hyperlipoproteinemia 4. Fat accumulation, especially in the abdominal region, is associated with chronic inflammation and insulin resistance by type 2 diabetes tissues and metabolic syndrome In addition to these reasons, a high GI diet, typically called Western Diet, is also generally deficient in plant foods, rich in antioxidants and photo compounds with anti-inflammatory action, without which the process of chronic organic inflammation is accelerated, even in the absence of real obesity.


Clinical Trial Description

For these reasons, in recent years the food industry has tried, not always successfully, to experiment with alternative formulations for its products, implementing a series of techniques to reduce the GI of foods, in particular those based on cereal flour. There are different methods useful to reduce the GI; in particular, the most impacting aspects of the GI of food containing carbohydrates are the sugar content, the starch content, the type of starch, the cooking method, previous processing, pre-cooking, post-cooking cooling, soaking, particle size and fiber quantity. Increased consumption of soluble fiber is associated with reduced absorption of sugars in the intestine and therefore a reduced GI. On the contrary, most of the fibers contained in cereals and tubers are not soluble. For this reason, the direct effect of fibers on glycemic absorption is not significant. On the other hand, whole grains generally have a lower glycemic index than refined grains and this may be due to a combination of factors such as reduced digestibility, higher starch-content resistance, and the effects of other constituents of bran (such as lipids). Insoluble fibers are also attributed to a greater satiating effect. The determination of the glycemic index can be estimated in vitro with good accuracy through an artificial digestive apparatus, or dynamic gastric model (DGM) but the gold standard remains the analysis of the glycemic response on subjects in vivo, typically volunteers. The ISO standard 26642 guidelines of 2010 represent the gold standard for the analysis of GI in humans and consists of a few simple steps that require blood sampling to determine blood sugar at the time 0, 15, 30, 45, 60, 90, and 120 min. The GI is but the average of the proportions between the sum of the 7 areas created by placing time on the abscissa (in minutes) and the ordinate blood sugar levels at each T (expressed in mmol/L or mg/dl) after consuming the test food compared to the sum of the areas created after consuming the reference food, usually glucose. Secondly, the modulation of the intake of sugars and calories can also be managed through alternative methods. It has been seen that, for example, different stimuli related to the sense of taste can modulate the sense of hunger and consequently the calorie intake in the following hours. This is especially true with the bitter taste. Appetite modulation due to the administration of particular foods was primarily associated with particular polymorphisms of receptor genes associated particularly with a bitter taste (TAS2R) and sweet (T1R2-T1R3). At the same time, the discovery of extra-oral receptors to recognize bitterness (extra-oral TAS2R) led the researchers to test the effects of administering particular bitter foods without the potential confounding effect of oral ingestion. Among recent studies, some researchers have shown that the effect of reducing energy intake has not been statistically significant in a group of overweight women, at least for some types of encapsulated bitterness while others have proven that an intragastric infusion of bitters significantly reduced hunger in a group of normal-weight women. Another study, in the short term, showed instead that an administration of bitters encapsulated with the base of 'Gentiana Lutea' during the morning meal can significantly reduce the energy intake of the day. Different types of bitters can stimulate different receptors of the TAS2R family. A recent review showed that the bitters most tested and used to determine changes in hunger and energy intake were Quinine, Denatonium Benzoate, Naringin, Secoiridoid, Hops, and Gentian. Bitter compounds, in comparison to other flavors, have proved to be the most effective in influencing eating behavior. This highlights the potential preventive role of bitter flavors in the fight against epidemic obesity. However, further studies are needed to understand which bitters are most useful for this purpose, and which subcategories of the population are most effective. Artemisia Absinthium is an edible and non-toxic plant, commonly called wormwood, for which analgesic, anti-inflammatory, and antidiabetic effects are documented. The bitter extract of this plant, if properly encapsulated, could also affect appetite regulation.The purpose of the first phase of this study is to test the GI of 3 different formulations, in the form of dietary biscuits, on 12 healthy volunteer subjects in order to calculate an average GI necessary for the company that provides the product to enrich the label with a final IG and start marketing. In the second phase, the same subjects will participate in a crossover study to test the same parameters of the first phase, with the addition of an investigation on the effects on hunger with 2 formulations of biscuits different from the first 3, one containing bitter encapsulated Artemisia Absinthium base. The chemotype of Artemisia absinthium used for the extract used is thujoni-free and therefore has no documented contraindication. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT05528874
Study type Interventional
Source Azienda Ospedaliero Universitaria Maggiore della Carita
Contact
Status Completed
Phase N/A
Start date April 22, 2022
Completion date September 1, 2023

See also
  Status Clinical Trial Phase
Completed NCT01267448 - Outpatient Discharge Therapy With Saxagliptin+MetforminXR vs GlipizideXL for Type 2 Diabetes With Severe Hyperglycemia Phase 4
Recruiting NCT03775733 - Efficacy and Safety of Hydrolysed Red Ginseng Extract on Improvement of Hyperglycemia N/A
Completed NCT03482154 - Malglycemia in the Pediatric Hematopoietic Stem Cell Transplant Population
Active, not recruiting NCT05477368 - Examining the Feasibility of Prolonged Ketone Supplement Drink Consumption in Adults With Type 2 Diabetes N/A
Completed NCT03675360 - Low-Carbohydrate Dietary Pattern on Glycemic Outcomes Trial N/A
Completed NCT00535600 - Effects of Bariatric Surgery on Insulin
Not yet recruiting NCT06159543 - The Effects of Fresh Mango Consumption on Cardiometabolic Outcomes in Free-living Individuals With Prediabetes N/A
Recruiting NCT02885922 - The Effects of add-on Anti-diabetic Drugs in Type 2 Diabetic Patients
Recruiting NCT02885909 - Inpatient Blood Glucose Control in Taichung Veterans General Hospital Phase 4
Withdrawn NCT01488383 - Effect of Stevioside in Postpandrial Glucose in Healthy Adults N/A
Completed NCT02012465 - Validation of Insulin Protocol for Glucocorticoid-induced Hyperglycemia in Diabetic Oncology Patients Early Phase 1
Completed NCT01805414 - Breakfast Nutrition and Inpatient Glycemia N/A
Completed NCT01803568 - Skeletal Muscles, Myokines and Glucose Metabolism MYOGLU N/A
Completed NCT01810952 - The Management of Glucocorticoid-Induced Hyperglycemia in Hospitalized Patients Phase 4
Active, not recruiting NCT01247714 - Clinical Evaluation of a Specific Enteral Diet for Diabetics N/A
Not yet recruiting NCT00846144 - The Reduction in Glucose Stimulated Insulin Secretion Induced by Cytokines May be Prevented by Copper Addition - Studies in Diabetic Patients N/A
Completed NCT00996099 - Continuous Glucose Monitoring Combined With Computer Algorithm for Intensive Insulin Therapy in Cardiosurgical Patients N/A
Recruiting NCT00654797 - Improving Blood Glucose Control With a Computerized Decision Support Tool: Phase 2 Phase 2
Completed NCT00468494 - Can Blood Glucose Levels During the Perioperative Period Identify a Population at Risk for Hyperglycemia? N/A
Completed NCT00394407 - Basal/Bolus Versus Sliding Scale Insulin In Hospitalized Patients With Type 2 Diabetes Phase 4