Clinical Trials Logo

Clinical Trial Details — Status: Terminated

Administrative data

NCT number NCT02590068
Other study ID # OJE-0890
Secondary ID 5U19AI111825-02
Status Terminated
Phase N/A
First received
Last updated
Start date December 2015
Est. completion date September 8, 2017

Study information

Verified date December 2019
Source Rockefeller University
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

This study aims to identify the innate and adaptive immune response to zoster vaccination. Half of the participants will be individuals with chronic hepatitis C, while the other half with healthy volunteers.The innate immune signature elicited by Zoster vaccination will be characterized by RNA-seq analysis of pre- and post-vaccination RNA from whole blood. We will compare fold changes in gene expression profiles pre- versus post-vaccination in each individual, as well as between the two arms of the study. RNA-seq will be used to assess innate immune activation by evaluating the changes to the expression levels of interferon-stimulated genes pre- and post-vaccination. Adaptive immune response will be determined by the traditional correlates of protection used in previous Zoster clinical studies in addition to flow cytometry24. Correlates of protection include antibody response, interferon gamma production and the frequency of responder cells post- vaccination24. For antibody production, we will perform Zoster glycoprotein ELISA (gpELISA) targeting IgG/IgM. The number and frequency of responder cells will be characterized by flow cytometry.


Description:

Chronic HCV infection is associated with persistent innate immune activation and dampened cellular immune responses. Interferons (IFNs) are key mediators of the antiviral innate immune response, initiating the expression of interferon-stimulated genes (ISG) with numerous host protective effector functions. However, in chronic HCV, high pre-therapy expression of ISG and persistent activation of the innate immune system negatively predicts the response to IFN-based therapies and failure of viral clearance8. In addition, HCV persistence is also associated with HCV-specific-CD8+ T cell exhaustion. HCV-specific CD8+ T cell exhaustion is characterized by diminished ex vivo polyfunctionality, upregulation of negative costimulatory cell modulators and, decreased cellular proliferation and IFN production10,12. This phenotype is associated with the development of short-term effector CD8+ T cells rather than durable, long-term memory CD8+ T cells. Chronic bystander infections (e.g. chronic HCV), characterized by persistent inflammation have been linked to bystander (non-HCV specific) CD8+ T cell dysfunction. Bystander CD8+ T cell dysfunction significantly impairs the expansion of memory CD8+ T cells and could prevent the development of secondary immunological memory to new antigens and/or vaccines11,13. Clinically, chronic HCV has been associated with impaired immune response to Hepatitis B vaccination13,14,15. Only 40% to 60% of individuals with chronic HCV achieve seroprotective titers following HBV vaccination versus 90% to 95% in healthy subjects13,14. Specific immune defects responsible for HBV vaccine failure in HCV-infected patients are unknown at present. However, some studies have suggested that the blunting of the immune response to HBV vaccination is associated with lymphocyte dysfunction and upregulation of PD-1 expression on CD4+ T cells in HBV vaccine non-responders13,15.

In the United States, 99.5% of adults over 40 years have been infected with the Varicella zoster virus (VZV) and are at risk of Zoster virus reactivation (shingles) and its complications. Unilateral, painful, blistering rashes along dermatomes characterize shingles. Complications associated with shingles include acute or chronic pain, osteonecrosis, zoster ophthalmicus with visual impairment, increased risk of blindness and a 4-fold risk of cerebral vasculitis-associated stroke)1,2. Overall, complications of shingles have a negative impact on the quality of life and activities of daily living21,22. Zoster vaccine live (Zostavax®, Merck) is recommended for the prevention of shingles. Zoster vaccine is a live, attenuated vaccine that is licensed by the FDA for individuals older than 50 years without an underlying immune deficiency (HIV, malignancies, immunosuppression and transplantation). In non-immunocompromised individuals, Zoster vaccine decreases shingles by 51% in individuals between ages 60 - 89 years and 70% in individuals between 50 - 59 years of age. Chronic infections such as TB, malaria and chronic Hepatitis C virus (HCV) have been associated with increased susceptibility to other pathogens and decreased vaccination efficacy3-6. Although chronic HCV infection is not considered a clinically immunocompromised state, it is associated with persistent immune activation and decreased vaccination response7. Zostavax is routinely administered to chronic HCV patients. However, at present, no other study has documented the immune responses elicited by Zoster vaccination in this population. This study aims to identify the innate and adaptive immune signatures elicited by zoster vaccination in chronic HCV and healthy volunteers. Unrecognized suboptimal vaccine response in individuals with chronic immune dysregulated states (chronic bystander viral infections (HBV, HCV and HIV with CD4 >200), diabetes, advancing age, cancers and transplantation) could be potentially devastating and costly.


Recruitment information / eligibility

Status Terminated
Enrollment 14
Est. completion date September 8, 2017
Est. primary completion date September 8, 2017
Accepts healthy volunteers Accepts Healthy Volunteers
Gender All
Age group 50 Years to 60 Years
Eligibility Inclusion Criteria:

- Willing to receive the herpes zoster vaccine

- Volunteer chronically infected with HCV (as demonstrated by serology testing and have a viral load >1000 copies) without treatment

- Healthy volunteer without significant medical problems

Exclusion Criteria:

- Received any vaccine within a month prior to study vaccine

- Previous Zoster infection as an adult, >18 years

- HIV or Hepatitis B virus infection in the HCV and healthy arms

- For HCV-negative, healthy volunteers: History of HCV infection or positive HCV antibody test

- Participation in another clinical study of an investigational product currently or within the past 90 days, or expected particpation during this study

- In the opinion of the investigator, the volunteer is unlikely to comply with the study protocol

- Any clinically significant abnormality or medical history or physical examination including history of immunodeficiency or autoimmune disease (in addition to HCV infection, for HCV group)

- Currently taking systemic steroids or other immunomodulatory medications including anticancer medications and antiviral medications

- Any clinically significant acute or chronic medical condition requiring care by a primary care provider (e.g., diabetes, coronary artery disease, rheumatologic illness, malignancy, substance abuse) that, in the opinion of the investigator, would preclude participation

- Male or female < 50 and > 70 years of age

- Is pregnant or lactating

- Clinical, laboratory, or biopsy evidence of cirrhosis

- Allergy to gelatin and/or neomycin

- ALT and/or AST > 3.5 times the ULN

- Immunosuppressed or immunodeficient individuals including those with a history of primary or acquired immunodeficiency states, leukemia, lymphoma or other malignant neoplasms affecting the bone marrow or lymphatic system and those on immunosuppressive therapy

- Individuals with active untreated tuberculosis

- Prior Varicella vaccination

- HCV volunteers who have a viral load of <1000 copies

Study Design


Related Conditions & MeSH terms


Intervention

Drug:
Zoster vaccine live
Single Zostavax vaccine, 0.65 ml dose, administered subcutaneously

Locations

Country Name City State
United States Rockefeller University Hospital New York New York

Sponsors (2)

Lead Sponsor Collaborator
Rockefeller University National Institute of Allergy and Infectious Diseases (NIAID)

Country where clinical trial is conducted

United States, 

References & Publications (22)

Abu-Raddad LJ, Patnaik P, Kublin JG. Dual infection with HIV and malaria fuels the spread of both diseases in sub-Saharan Africa. Science. 2006 Dec 8;314(5805):1603-6. Erratum in: Science. 2007 Feb 2;315(5812):598. — View Citation

Bahgat MM, El-Far MA, Mesalam AA, Ismaeil AA, Ibrahim AA, Gewaid HE, Maghraby AS, Ali MA, Abd-Elshafy DN. Schistosoma mansoni soluble egg antigens enhance HCV replication in mammalian cells. J Infect Dev Ctries. 2010 May 1;4(4):226-34. — View Citation

Crawford A, Angelosanto JM, Kao C, Doering TA, Odorizzi PM, Barnett BE, Wherry EJ. Molecular and transcriptional basis of CD4? T cell dysfunction during chronic infection. Immunity. 2014 Feb 20;40(2):289-302. doi: 10.1016/j.immuni.2014.01.005. Epub 2014 Feb 13. — View Citation

Drolet M, Levin MJ, Schmader KE, Johnson R, Oxman MN, Patrick D, Fournier SO, Mansi JA, Brisson M. Employment related productivity loss associated with herpes zoster and postherpetic neuralgia: a 6-month prospective study. Vaccine. 2012 Mar 9;30(12):2047-50. doi: 10.1016/j.vaccine.2012.01.045. Epub 2012 Jan 28. — View Citation

Law CW, Chen Y, Shi W, Smyth GK. voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014 Feb 3;15(2):R29. doi: 10.1186/gb-2014-15-2-r29. — View Citation

Levin MJ, Smith JG, Kaufhold RM, Barber D, Hayward AR, Chan CY, Chan IS, Li DJ, Wang W, Keller PM, Shaw A, Silber JL, Schlienger K, Chalikonda I, Vessey SJ, Caulfield MJ. Decline in varicella-zoster virus (VZV)-specific cell-mediated immunity with increasing age and boosting with a high-dose VZV vaccine. J Infect Dis. 2003 Nov 1;188(9):1336-44. Epub 2003 Oct 17. — View Citation

Lin F, Hadler JL. Epidemiology of primary varicella and herpes zoster hospitalizations: the pre-varicella vaccine era. J Infect Dis. 2000 Jun;181(6):1897-905. Epub 2000 Jun 5. Erratum in: J Infect Dis. 2013 May 15;207(10):1625. — View Citation

Maecker HT, McCoy JP, Nussenblatt R. Standardizing immunophenotyping for the Human Immunology Project. Nat Rev Immunol. 2012 Feb 17;12(3):191-200. doi: 10.1038/nri3158. Review. Erratum in: Nat Rev Immunol. 2012 Jun;12(6):471. — View Citation

Metz P, Dazert E, Ruggieri A, Mazur J, Kaderali L, Kaul A, Zeuge U, Windisch MP, Trippler M, Lohmann V, Binder M, Frese M, Bartenschlager R. Identification of type I and type II interferon-induced effectors controlling hepatitis C virus replication. Hepatology. 2012 Dec;56(6):2082-93. doi: 10.1002/hep.25908. Epub 2012 Oct 14. — View Citation

Moorman JP, Zhang CL, Ni L, Ma CJ, Zhang Y, Wu XY, Thayer P, Islam TM, Borthwick T, Yao ZQ. Impaired hepatitis B vaccine responses during chronic hepatitis C infection: involvement of the PD-1 pathway in regulating CD4(+) T cell responses. Vaccine. 2011 Apr 12;29(17):3169-76. doi: 10.1016/j.vaccine.2011.02.052. Epub 2011 Mar 3. — View Citation

Oxman MN, Levin MJ, Johnson GR, Schmader KE, Straus SE, Gelb LD, Arbeit RD, Simberkoff MS, Gershon AA, Davis LE, Weinberg A, Boardman KD, Williams HM, Zhang JH, Peduzzi PN, Beisel CE, Morrison VA, Guatelli JC, Brooks PA, Kauffman CA, Pachucki CT, Neuzil KM, Betts RF, Wright PF, Griffin MR, Brunell P, Soto NE, Marques AR, Keay SK, Goodman RP, Cotton DJ, Gnann JW Jr, Loutit J, Holodniy M, Keitel WA, Crawford GE, Yeh SS, Lobo Z, Toney JF, Greenberg RN, Keller PM, Harbecke R, Hayward AR, Irwin MR, Kyriakides TC, Chan CY, Chan IS, Wang WW, Annunziato PW, Silber JL; Shingles Prevention Study Group. A vaccine to prevent herpes zoster and postherpetic neuralgia in older adults. N Engl J Med. 2005 Jun 2;352(22):2271-84. — View Citation

Pisell TL, Hoffman IF, Jere CS, Ballard SB, Molyneux ME, Butera ST, Lawn SD. Immune activation and induction of HIV-1 replication within CD14 macrophages during acute Plasmodium falciparum malaria coinfection. AIDS. 2002 Jul 26;16(11):1503-9. — View Citation

Sauerbrei A, Wutzler P. Serological detection of varicella-zoster virus-specific immunoglobulin G by an enzyme-linked immunosorbent assay using glycoprotein antigen. J Clin Microbiol. 2006 Sep;44(9):3094-7. — View Citation

Schmader KE, Johnson GR, Saddier P, Ciarleglio M, Wang WW, Zhang JH, Chan IS, Yeh SS, Levin MJ, Harbecke RM, Oxman MN; Shingles Prevention Study Group. Effect of a zoster vaccine on herpes zoster-related interference with functional status and health-related quality-of-life measures in older adults. J Am Geriatr Soc. 2010 Sep;58(9):1634-41. doi: 10.1111/j.1532-5415.2010.03021.x. — View Citation

Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, Bieniasz P, Rice CM. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature. 2011 Apr 28;472(7344):481-5. doi: 10.1038/nature09907. Epub 2011 Apr 10. Erratum in: Nature. 2015 Sep 3;525(7567):144. — View Citation

Soneson C, Delorenzi M. A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinformatics. 2013 Mar 9;14:91. doi: 10.1186/1471-2105-14-91. — View Citation

Stelekati E, Shin H, Doering TA, Dolfi DV, Ziegler CG, Beiting DP, Dawson L, Liboon J, Wolski D, Ali MA, Katsikis PD, Shen H, Roos DS, Haining WN, Lauer GM, Wherry EJ. Bystander chronic infection negatively impacts development of CD8(+) T cell memory. Immunity. 2014 May 15;40(5):801-13. doi: 10.1016/j.immuni.2014.04.010. — View Citation

Stelekati E, Wherry EJ. Chronic bystander infections and immunity to unrelated antigens. Cell Host Microbe. 2012 Oct 18;12(4):458-69. doi: 10.1016/j.chom.2012.10.001. Review. — View Citation

Urbani S, Amadei B, Tola D, Massari M, Schivazappa S, Missale G, Ferrari C. PD-1 expression in acute hepatitis C virus (HCV) infection is associated with HCV-specific CD8 exhaustion. J Virol. 2006 Nov;80(22):11398-403. Epub 2006 Sep 6. — View Citation

Wherry EJ, Ha SJ, Kaech SM, Haining WN, Sarkar S, Kalia V, Subramaniam S, Blattman JN, Barber DL, Ahmed R. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity. 2007 Oct;27(4):670-84. Epub 2007 Oct 18. Erratum in: Immunity. 2007 Nov;27(5):824. — View Citation

Wiedmann M, Liebert UG, Oesen U, Porst H, Wiese M, Schroeder S, Halm U, Mössner J, Berr F. Decreased immunogenicity of recombinant hepatitis B vaccine in chronic hepatitis C. Hepatology. 2000 Jan;31(1):230-4. — View Citation

Zhu J, Hladik F, Woodward A, Klock A, Peng T, Johnston C, Remington M, Magaret A, Koelle DM, Wald A, Corey L. Persistence of HIV-1 receptor-positive cells after HSV-2 reactivation is a potential mechanism for increased HIV-1 acquisition. Nat Med. 2009 Aug;15(8):886-92. doi: 10.1038/nm.2006. Epub 2009 Aug 2. — View Citation

* Note: There are 22 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Serum Zoster Antibody Level Serum zoster antibody level would be measured by gpELISA expressed in (units/mL) 18 months
Secondary Interferon Stimulated Gene (ISG) Expression Interferon stimulated gene (ISG) expression in PBMC will be expressed as fold-change (FCH) above baseline 18 months
Secondary Serum Biomarkers of Immune Activation(Expressed in%) Serum biomarkers of immune activation will be measured and expressed in percentage. 18 months
Secondary Responder Cell Frequency Responder cell frequency: VZV specific CD4+ T cells post-vaccination (expressed in %) 18 months
Secondary Interferon-gamma Response Interferon-gamma response: by ELIspot expressed as number of spot-forming cells per million PBMCs 18 months
See also
  Status Clinical Trial Phase
Completed NCT03686722 - Effect of Co-administration of Metformin and Daclatasvir on the Pharmacokinetis and Pharmacodynamics of Metformin Phase 1
Recruiting NCT04510246 - Link Hepatitis C Notifications to Treatment in Tasmania N/A
Completed NCT03413696 - Effects of Health Literacy and HCV Knowledge on HCV Treatment Willingness in HIV-coinfected Patients
Completed NCT03118674 - Harvoni Treatment Porphyria Cutanea Tarda Phase 2
Completed NCT03109457 - Hepatitis C Virus Detection in Oral Squamous Cell Carcinoma
Completed NCT01458054 - Effect of Omeprazole and Ritonavir on GSK2336805 Pharmacokinetics in Healthy Adults Phase 1
Completed NCT03740230 - An Observational Study of Maviret (Glecaprevir/Pibrentasvir) for Korean Chronic Hepatitis C Genotypes 1 to 6 Patients According to the Standard for Re-examination of New Drugs
Completed NCT03426787 - Helping Empower Liver and Kidney Patients N/A
Completed NCT03627299 - Renal Transplants in Hepatitis C Negative Recipients With Nucleic Acid Positive Donors Phase 4
Completed NCT00006301 - Immune Response to Hepatitis C Virus
Active, not recruiting NCT03949764 - The Kentucky Viral Hepatitis Treatment Study Phase 4
Completed NCT03365635 - Administration of Zepatier (Grazoprevir Plus Elbasvir) in Chronic Hemodialysis (HD) Patients With Hepatitis C Phase 4
Recruiting NCT04405024 - Pilot Study on the Feasibility of Systematic Hepatitis C Screening of Hospitalized Patients N/A
Completed NCT04525690 - Improving Inpatient Screening for Hepatitis C N/A
Completed NCT04033887 - Evaluation Study of RDTs Detecting Antibodies Against HCV
Withdrawn NCT04546802 - HepATocellular Cancer Hcv Therapy Study Phase 3
Active, not recruiting NCT02961426 - Strategic Transformation of the Market of HCV Treatments Phase 2/Phase 3
Completed NCT02869776 - Integrating HCV and HIV Screening During the Era of HIV Antigen Testing N/A
Completed NCT02705534 - Sofosbuvir, Ledipasvir, Ribavirin for Hepatitis C Cirrhotics, Genotype 1 Phase 3
Completed NCT03186313 - A Study to Evaluate the Safety and Efficacy of the Combined Single Dose of Dactavira Plus Or Dactavira in Egyptian Adults With Chronic Genotype 4 HCV Infection Phase 3