Clinical Trials Logo

Clinical Trial Summary

The goal of this study is to improve music and speech perception for cochlear implant users. Presently, most cochlear implants discard the temporal fine structure of sound, which is information that is widely believed to contribute to both music and speech perception. The proposed work examines perceptual and physiological changes that occur once this information is provided to cochlear implant users in a clear and consistent manner.


Clinical Trial Description

The study goal is to improve music and speech perception for cochlear implant users. The relevant health outcome is their quality of life. This proposal focuses on how well cochlear implant users can learn to use temporal fine structure if provided as a clear and consistent cue for music or voice pitch. Historically, cochlear implants have discarded temporal fine structure and have only transmitted timing information of relatively slow envelope fluctuations. Attempts have been made to restore temporal fine structure into cochlear implant stimulation, but it is unclear whether previous attempts were limited by implementation, lack of experience, or inherently by physiology. The proposed approach is unique in that it examines the perceptual and physiological plasticity that occurs when temporal fine structure is restored. Proposed research is organized into two aims, which examine the relative salience of stimulation place and rate for providing a sense of pitch (Aim 1) and the salience of dynamic-rate stimulation compared to conventional methods (Aim 2). Both aims combine perceptual learning, computer-controlled electrode psychophysics, electrophysiology, and computational neural modeling to characterize the plasticity of pitch perception in cochlear implant users. Aim 1 examines the perceptual and physiological plasticity associated with place and rate of cochlear implant stimulation. Cochlear implant users hear an increasing pitch associated with increasing stimulation rate, but this effect is difficult to measure above 300 Hz. Most studies of psychophysical sensitivity to cochlear implant stimulation rate have not considered perceptual learning. Preliminary results show that the sense of pitch provided by stimulation rate improves with training. The proposed research examines perceptual sensitivity and physiological encoding throughout a crossover training study with training provided for pitch based on place and rate of stimulation. The primary hypothesis tested is that cochlear implant users have a latent ability to hear pitch associated with stimulation rate, but they require training to learn how to use this new information. Aim 2 is to determine whether dynamic-rate stimulation provides better sensitivity and better physiological encoding of fundamental frequency compared to conventional stimulation methods based on amplitude modulation of constant-rate stimulation. In normal physiology, auditory-nerve activity phase locks to the temporal fine structure of sound. Since cochlear implants typically discard this information, it is unknown how well cochlear implant users can learn to use it if provided. Aim 2 focuses on the comparison between dynamic-rate stimulation in which stimulation rate is dynamically adjusted to convey temporal fine structure compared to conventional methods based on amplitude modulation of constant-rate stimulation. The primary hypothesis is that dynamic-rate stimulation provides better pitch sensitivity and better physiological encoding compared to amplitude modulation of constant-rate stimulation. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04708717
Study type Interventional
Source University of Southern California
Contact Ray Goldsworthy, PhD
Phone 2132223384
Email raymond.goldsworthy@med.usc.edu
Status Recruiting
Phase N/A
Start date September 1, 2020
Completion date December 5, 2024

See also
  Status Clinical Trial Phase
Recruiting NCT04696835 - fNIRS in Pediatric Hearing Aids N/A
Completed NCT03662256 - Reducing Childhood Hearing Loss in Rural Alaska Through a Preschool Screening and Referral Process Using Mobile Health and Telemedicine N/A
Completed NCT04602780 - Evaluating the Revised WORQ in CI Users
Completed NCT03723161 - Evaluation of the Ponto Bone Anchored Hearing System in a Pediatric Atresia Population
Completed NCT05086809 - Investigation of an Updated Bone-anchored Sound Processor N/A
Active, not recruiting NCT03548779 - North Carolina Genomic Evaluation by Next-generation Exome Sequencing, 2 N/A
Completed NCT03428841 - Audiovisual Assessment After Dural Puncture During Epidural Placement in Obstetric Patients N/A
Completed NCT04559282 - Home Test of New Sound Processor N/A
Enrolling by invitation NCT03345654 - Individually-guided Hearing Aid Fitting
Completed NCT06016335 - MRI-based Synthetic CT Images of the Head and Neck N/A
Completed NCT05165121 - Comparison of Hearing Aid Fitting Outcomes Between Self-fit and Professional Fit for MDHearing Smart Hearing Aids N/A
Recruiting NCT05533840 - Establishment and Application of a New Imaging System for Otology Based on Ultra-high Resolution CT
Completed NCT04622059 - AUditive Direct In-utero Observation (AUDIO): Prenatal Testing of Congenital Hypoacusis N/A
Terminated NCT02294812 - Effects of Cognitive Training on Speech Perception N/A
Recruiting NCT02558478 - Identification of New Genes Implicated in Rare Neurosensory Diseases by Whole Exome Sequencing N/A
Withdrawn NCT02740322 - Validating the Hum Test N/A
Completed NCT01963104 - Community-Based Kiosks for Hearing Screening and Education N/A
Completed NCT01892007 - Evaluation of Cogmed Working Memory Training for Adult Hearing Aid Users N/A
Completed NCT01857661 - The Influence of the Sound Generator Combined With Conventional Amplification for Tinnitus Control: Blind Randomized Clinical Trial N/A
Withdrawn NCT01223638 - The Prevalence of Hearing Loss Among Children With Congenital Hypothyroidism N/A