Clinical Trials Logo

Clinical Trial Summary

Many older subjects experience difficulty in understanding speech in noisy environments. Part of this problem is related to changes that occur in the ear with age and compromise the hearing of high-pitched sounds. Another part of the problem with speech understanding relates to changes with age in the neural circuits of the brain that process different speech sounds. Evidence suggests that these changes in neural circuits are particularly large if hearing loss is present. Thus, while hearing aids may help compensate for hearing deficits by amplifying speech sounds, additional treatment is necessary to restore optimal neural connections in the brain so that speech sounds can be accurately distinguished from each other. We are developing PC-based training programs in an attempt to restore optimal neural connections. The current randomized trial will evaluate whether two months of training to improve the ability to discriminate different consonant sounds in noise will also improve the understanding of continuous speech and enhance auditory memory and other high-level auditory functions.


Clinical Trial Description

More than 300,000 veterans with sensorineural hearing loss (SNHL) are fitted with VA-issued hearing aids (HAs) each year with the primary goal of improving their understanding of speech. Even older veterans without hearing loss experience a gradual decline in speech discrimination due to age-related changes in auditory function that compromise speech understanding in everyday environments. Neuroplastic reorganization within the central auditory system due to SNHL and aging contribute to these effects and compromise subjects' ability to process phonetic cues that are essential for understanding speech in noise. As a consequence, even when a HA restores high frequency signals to the cochlea in a patient with SNHL, speech understanding will remain suboptimal in the absence of rehabilitative perceptual learning.

We have developed perceptual learning paradigms that drive this rehabilitative reorganization and significantly improve speech discrimination in new HA users. We now propose to test improved training paradigms in new and experienced HA users and older subjects with normal hearing. In Exp. 1 we will evaluate baseline speech discrimination in these populations using speech-reception thresholds (SRTs) in sentences, consonant-vowel-consonant nonsense syllable tests (CVC-NST), tests of tone-pattern discrimination, and tests of auditory short-term verbal memory (ASTVM). An analysis of the correlations of these measures will provide information about basic processes underlying impaired word and sentence identification. In Exp. 2 we will investigate the effects of CVC-identification training using performance-adapted masking noise. Based on our previous results, we anticipate that training will significantly improve CVC-NST scores. We will examine the extent to which training improves SRTs, tone-pattern processing, and ASTVM. In Exp. 3 we will train subjects in a tone-pattern identification task to evaluate the extent to which non-phonetic factors (e.g., familiarity with the computerized hearing tests, placebo effects of training, improvements in auditory attention, etc.) may contribute to training benefit. In Exp. 4 we will compare the benefits of training with single-consonant syllables with the benefits of two-consonant syllable training studied in Exp. 2. Finally, in Exp. 5 we will study the benefits of CVC training using consonant-specific noise levels adjusted to compensate for intrinsic differences in the discriminability of different consonants and compare them to the benefits of global adaptive training from Exp. 2. The experiments will clarify fundamental mechanisms underlying deficits in speech discrimination and ASTVM, provide insight into the nature of training-related improvements, and elucidate the parameters needed to optimize hearing rehabilitation.

Relevance to the VA patient care mission: HAs are relatively ineffective in improving the ability of hearing-impaired subjects to understand speech in many everyday listening situations. These experiments will clarify the extent to which perceptual training can improve speech discrimination and enhance ASTVM in these conditions in new and experienced HA users and older subjects with normal hearing. Perceptual training could potentially benefit millions of veterans who wear HAs as well as older veterans with normal hearing who experience difficulties in understanding and remembering speech. ;


Study Design

Endpoint Classification: Efficacy Study, Intervention Model: Single Group Assignment, Masking: Open Label, Primary Purpose: Basic Science


Related Conditions & MeSH terms


NCT number NCT00724347
Study type Interventional
Source VA Office of Research and Development
Contact
Status Completed
Phase N/A
Start date July 2008
Completion date March 2013

See also
  Status Clinical Trial Phase
Completed NCT04281953 - Impact on Quality of Life of Long-term Ototoxicity in Cancer Survivors
Not yet recruiting NCT05973669 - MED-EL Remote Care Multi-Center Feasibility Study N/A
Completed NCT04601909 - FX-322 in Adults With Age-Related Sensorineural Hearing Loss Phase 1
Active, not recruiting NCT04479761 - Sensory Integration of Auditory and Visual Cues in Diverse Contexts N/A
Recruiting NCT05043207 - A Study Protocol for the Validation of UAud in a Clinical Setting. N/A
Recruiting NCT04070937 - Correlation of Radiological Lesions With Vestibular Function in Patients With Bilateral Vestibulopathy
Recruiting NCT04066270 - Inventory of Radiological and Vestibular Function in Cochlear Implant Candidates
Completed NCT03512951 - Subjective Evaluation of a Sound Processing Method for Hearing Aids on Auditory Distance Perception N/A
Completed NCT05855005 - Direct-to-Consumer Hearing Aids and Listening Effort N/A
Recruiting NCT05599165 - Speech Perception in Bimodal Hearing N/A
Completed NCT05101083 - Speech Intelligibility in Quiet and Noise for New vs. Legacy Hearing Aids N/A
Completed NCT05521308 - Investigating Hearing Aid Frequency Response Curves N/A
Completed NCT05072457 - Benefit of Assistive Listening Device for Lateralization N/A
Recruiting NCT05776459 - Efficacy and Safety of AC102 Compared to Steroids in Adults With Idiopathic Sudden Sensorineural Hearing Loss (ISSNHL) Phase 2
Completed NCT05086276 - FX-322 in Adults With Acquired Sensorineural Hearing Loss Phase 2
Recruiting NCT06058767 - Preschool Hearing Screening N/A
Completed NCT05180630 - Sound Quality Comparisons With Different Hearing Aid Couplings and Venting Systems N/A
Completed NCT03613909 - Acceptance of the CP950 Sound Processor N/A
Active, not recruiting NCT03352154 - Long Latency Auditory Evoked Potentials (P300) Outcomes in Patients With Unilateral Cochlear Implants N/A
Completed NCT04629664 - FX-322 in Adults With Severe Sensorineural Hearing Loss Phase 1