Healthy Aging Clinical Trial
Official title:
Examination of a Novel Cognitive-motor Weight-bearing Dual-task Intervention in Older Adults
NCT number | NCT05296551 |
Other study ID # | NCR213528 |
Secondary ID | |
Status | Terminated |
Phase | N/A |
First received | |
Last updated | |
Start date | March 3, 2022 |
Est. completion date | May 5, 2024 |
Verified date | May 2024 |
Source | George Washington University |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
This study seeks to understand what factors influence the capacity to perform simultaneous motor and cognitive tasks in older adults to improve movement throughout their community with the least risk of injury. To function in the real world, one needs to "walk and talk", or to move about the community while attending to their environment. Navigating a busy environment becomes increasingly difficult due to the multitude of constraints placed on the organism by both the brain and the body that are associated with aging. Resulting lack of movement causes a downward spiral; further decreasing function and increasing risk of co-morbidities. This will impose an enormous cost on our healthcare system as the elderly population continues to grow in the United States. The investigators aim to investigate both cognitive and movement changes during aging to prevent declines in functional mobility. The investigators will do this through eight weeks training of simultaneous cognitive and motor tasks (cognitive-motor training).
Status | Terminated |
Enrollment | 3 |
Est. completion date | May 5, 2024 |
Est. primary completion date | May 5, 2024 |
Accepts healthy volunteers | Accepts Healthy Volunteers |
Gender | All |
Age group | 60 Years to 95 Years |
Eligibility | Inclusion Criteria: - Between 60 and 95 Years Old - Self-described as generally healthy - Normal or corrected to normal vision - Able to stand on one foot for at least 3 seconds with minimal sway and no loss of balance Exclusion Criteria: - Known neurologic disorder affecting mobility or cognition - Self-reported known moderate or greater lower extremity arthritis - Known disease process that affects muscle function - Color Blindness - Lower extremity pain in the previous 15 days - Known learning or attention deficit - Currently taking medication that affects attention, learning, and/or memory - Known Cardiovascular Disease of previous heart attack or cardiomyopathy - Chronic Kidney Disease - Severe Obesity as defined by a BMI of greater than or equal to 40 Kg/m2 |
Country | Name | City | State |
---|---|---|---|
United States | The George Washington University, Department of Health, Human Function and Rehabilitation Science | Washington | District of Columbia |
Lead Sponsor | Collaborator |
---|---|
George Washington University |
United States,
(2004). Oxygen Uptake Kinetics in Sport, Exercise and Medicine, Routledge.
Alcock L, Galna B, Lord S, Rochester L. Characterisation of foot clearance during gait in people with early Parkinson?s disease: Deficits associated with a dual task. J Biomech. 2016 Sep 6;49(13):2763-2769. doi: 10.1016/j.jbiomech.2016.06.007. Epub 2016 Jun 15. — View Citation
Alvarez JA, Emory E. Executive function and the frontal lobes: a meta-analytic review. Neuropsychol Rev. 2006 Mar;16(1):17-42. doi: 10.1007/s11065-006-9002-x. — View Citation
Alves FD, Souza GC, Biolo A, Clausell N. Comparison of two bioelectrical impedance devices and dual-energy X-ray absorptiometry to evaluate body composition in heart failure. J Hum Nutr Diet. 2014 Dec;27(6):632-8. doi: 10.1111/jhn.12218. Epub 2014 Mar 29. — View Citation
Amboni M, Barone P, Iuppariello L, Lista I, Tranfaglia R, Fasano A, Picillo M, Vitale C, Santangelo G, Agosti V, Iavarone A, Sorrentino G. Gait patterns in Parkinsonian patients with or without mild cognitive impairment. Mov Disord. 2012 Oct;27(12):1536-43. doi: 10.1002/mds.25165. Epub 2012 Oct 2. — View Citation
American Thoracic Society; American College of Chest Physicians. ATS/ACCP Statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med. 2003 Jan 15;167(2):211-77. doi: 10.1164/rccm.167.2.211. No abstract available. Erratum In: Am J Respir Crit Care Med. 2003 May 15;1451-2. — View Citation
Baddeley A, Logie R, Bressi S, Della Sala S, Spinnler H. Dementia and working memory. Q J Exp Psychol A. 1986 Nov;38(4):603-18. doi: 10.1080/14640748608401616. No abstract available. — View Citation
Baetens T, De Kegel A, Palmans T, Oostra K, Vanderstraeten G, Cambier D. Gait analysis with cognitive-motor dual tasks to distinguish fallers from nonfallers among rehabilitating stroke patients. Arch Phys Med Rehabil. 2013 Apr;94(4):680-6. doi: 10.1016/j.apmr.2012.11.023. Epub 2012 Nov 24. — View Citation
Balady GJ, Arena R, Sietsema K, Myers J, Coke L, Fletcher GF, Forman D, Franklin B, Guazzi M, Gulati M, Keteyian SJ, Lavie CJ, Macko R, Mancini D, Milani RV; American Heart Association Exercise, Cardiac Rehabilitation, and Prevention Committee of the Council on Clinical Cardiology; Council on Epidemiology and Prevention; Council on Peripheral Vascular Disease; Interdisciplinary Council on Quality of Care and Outcomes Research. Clinician's Guide to cardiopulmonary exercise testing in adults: a scientific statement from the American Heart Association. Circulation. 2010 Jul 13;122(2):191-225. doi: 10.1161/CIR.0b013e3181e52e69. Epub 2010 Jun 28. No abstract available. — View Citation
Beaver WL, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol (1985). 1986 Jun;60(6):2020-7. doi: 10.1152/jappl.1986.60.6.2020. — View Citation
Bedard P, Song JH. Attention modulates generalization of visuomotor adaptation. J Vis. 2013 Oct 16;13(12):12. doi: 10.1167/13.12.12. — View Citation
Blumen HM, Holtzer R, Brown LL, Gazes Y, Verghese J. Behavioral and neural correlates of imagined walking and walking-while-talking in the elderly. Hum Brain Mapp. 2014 Aug;35(8):4090-104. doi: 10.1002/hbm.22461. Epub 2014 Feb 12. — View Citation
Bo J, Borza V, Seidler RD. Age-related declines in visuospatial working memory correlate with deficits in explicit motor sequence learning. J Neurophysiol. 2009 Nov;102(5):2744-54. doi: 10.1152/jn.00393.2009. Epub 2009 Sep 2. — View Citation
Bo J, Seidler RD. Visuospatial working memory capacity predicts the organization of acquired explicit motor sequences. J Neurophysiol. 2009 Jun;101(6):3116-25. doi: 10.1152/jn.00006.2009. Epub 2009 Apr 8. — View Citation
Bolanowski M, Nilsson BE. Assessment of human body composition using dual-energy x-ray absorptiometry and bioelectrical impedance analysis. Med Sci Monit. 2001 Sep-Oct;7(5):1029-33. — View Citation
Brauer SG, Morris ME. Can people with Parkinson's disease improve dual tasking when walking? Gait Posture. 2010 Feb;31(2):229-33. doi: 10.1016/j.gaitpost.2009.10.011. Epub 2009 Dec 6. — View Citation
Cockburn J, Haggard P, Cock J, Fordham C. Changing patterns of cognitive-motor interference (CMI) over time during recovery from stroke. Clin Rehabil. 2003 Mar;17(2):167-73. doi: 10.1191/0269215503cr597oa. — View Citation
Cole KR, Shields RK. Age and Cognitive Stress Influences Motor Skill Acquisition, Consolidation, and Dual-Task Effect in Humans. J Mot Behav. 2019;51(6):622-639. doi: 10.1080/00222895.2018.1547893. Epub 2019 Jan 2. — View Citation
Dalleck, L.C. and J.S. Tischendorf. Guidelines for Exercise Testing and Prescription (ACSM). Encyclopedia of Lifestyle Medicine & Health, SAGE Publications, Inc.
Dennis A, Dawes H, Elsworth C, Collett J, Howells K, Wade DT, Izadi H, Cockburn J. Fast walking under cognitive-motor interference conditions in chronic stroke. Brain Res. 2009 Sep 1;1287:104-10. doi: 10.1016/j.brainres.2009.06.023. Epub 2009 Jun 13. — View Citation
Doi T, Makizako H, Shimada H, Park H, Tsutsumimoto K, Uemura K, Suzuki T. Brain activation during dual-task walking and executive function among older adults with mild cognitive impairment: a fNIRS study. Aging Clin Exp Res. 2013 Oct;25(5):539-44. doi: 10.1007/s40520-013-0119-5. Epub 2013 Aug 15. — View Citation
Elovainio M, Kivimaki M, Ferrie JE, Gimeno D, De Vogli R, Virtanen M, Vahtera J, Brunner EJ, Marmot MG, Singh-Manoux A. Physical and cognitive function in midlife: reciprocal effects? A 5-year follow-up of the Whitehall II study. J Epidemiol Community Health. 2009 Jun;63(6):468-73. doi: 10.1136/jech.2008.081505. — View Citation
Erickson KI, Colcombe SJ, Wadhwa R, Bherer L, Peterson MS, Scalf PE, Kramer AF. Neural correlates of dual-task performance after minimizing task-preparation. Neuroimage. 2005 Dec;28(4):967-79. doi: 10.1016/j.neuroimage.2005.06.047. Epub 2005 Aug 16. — View Citation
Fritz NE, Cheek FM, Nichols-Larsen DS. Motor-Cognitive Dual-Task Training in Persons With Neurologic Disorders: A Systematic Review. J Neurol Phys Ther. 2015 Jul;39(3):142-53. doi: 10.1097/NPT.0000000000000090. — View Citation
Galna B, Lord S, Rochester L. Is gait variability reliable in older adults and Parkinson's disease? Towards an optimal testing protocol. Gait Posture. 2013 Apr;37(4):580-5. doi: 10.1016/j.gaitpost.2012.09.025. Epub 2012 Oct 25. — View Citation
Goh HT, Sullivan KJ, Gordon J, Wulf G, Winstein CJ. Dual-task practice enhances motor learning: a preliminary investigation. Exp Brain Res. 2012 Oct;222(3):201-10. doi: 10.1007/s00221-012-3206-5. Epub 2012 Aug 12. — View Citation
Gothe K, Oberauer K, Kliegl R. Age differences in dual-task performance after practice. Psychol Aging. 2007 Sep;22(3):596-606. doi: 10.1037/0882-7974.22.3.596. — View Citation
Gothe NP, Fanning J, Awick E, Chung D, Wojcicki TR, Olson EA, Mullen SP, Voss M, Erickson KI, Kramer AF, McAuley E. Executive function processes predict mobility outcomes in older adults. J Am Geriatr Soc. 2014 Feb;62(2):285-90. doi: 10.1111/jgs.12654. Epub 2014 Jan 21. — View Citation
Herath P, Klingberg T, Young J, Amunts K, Roland P. Neural correlates of dual task interference can be dissociated from those of divided attention: an fMRI study. Cereb Cortex. 2001 Sep;11(9):796-805. doi: 10.1093/cercor/11.9.796. — View Citation
Jacobs JV, Nutt JG, Carlson-Kuhta P, Allen R, Horak FB. Dual tasking during postural stepping responses increases falls but not freezing in people with Parkinson's disease. Parkinsonism Relat Disord. 2014 Jul;20(7):779-81. doi: 10.1016/j.parkreldis.2014.04.001. Epub 2014 Apr 14. — View Citation
Jones AM, Carter H. The effect of endurance training on parameters of aerobic fitness. Sports Med. 2000 Jun;29(6):373-86. doi: 10.2165/00007256-200029060-00001. — View Citation
Kafri MW, Potter JF, Myint PK. Multi-frequency bioelectrical impedance analysis for assessing fat mass and fat-free mass in stroke or transient ischaemic attack patients. Eur J Clin Nutr. 2014 Jun;68(6):677-82. doi: 10.1038/ejcn.2013.266. Epub 2014 Jan 8. — View Citation
Leitner Y, Barak R, Giladi N, Peretz C, Eshel R, Gruendlinger L, Hausdorff JM. Gait in attention deficit hyperactivity disorder : effects of methylphenidate and dual tasking. J Neurol. 2007 Oct;254(10):1330-8. doi: 10.1007/s00415-006-0522-3. Epub 2007 Apr 2. — View Citation
Lundin-Olsson L, Nyberg L, Gustafson Y. "Stops walking when talking" as a predictor of falls in elderly people. Lancet. 1997 Mar 1;349(9052):617. doi: 10.1016/S0140-6736(97)24009-2. No abstract available. — View Citation
Makizako H, Doi T, Shimada H, Yoshida D, Takayama Y, Suzuki T. Relationship between dual-task performance and neurocognitive measures in older adults with mild cognitive impairment. Geriatr Gerontol Int. 2013 Apr;13(2):314-21. doi: 10.1111/j.1447-0594.2012.00898.x. Epub 2012 Jun 14. — View Citation
Makizako H, Doi T, Shimada H, Yoshida D, Tsutsumimoto K, Uemura K, Suzuki T. Does a multicomponent exercise program improve dual-task performance in amnestic mild cognitive impairment? A randomized controlled trial. Aging Clin Exp Res. 2012 Dec;24(6):640-6. doi: 10.3275/8760. Epub 2012 Nov 26. — View Citation
Marques NR, Hallal CZ, Spinoso DH, Morcelli MH, Crozara LF, Goncalves M. Applying different mathematical variability methods to identify older fallers and non-fallers using gait variability data. Aging Clin Exp Res. 2017 Jun;29(3):473-481. doi: 10.1007/s40520-016-0592-8. Epub 2016 Jun 2. — View Citation
Muir SW, Speechley M, Wells J, Borrie M, Gopaul K, Montero-Odasso M. Gait assessment in mild cognitive impairment and Alzheimer's disease: the effect of dual-task challenges across the cognitive spectrum. Gait Posture. 2012 Jan;35(1):96-100. doi: 10.1016/j.gaitpost.2011.08.014. Epub 2011 Sep 22. — View Citation
O'Shea S, Morris ME, Iansek R. Dual task interference during gait in people with Parkinson disease: effects of motor versus cognitive secondary tasks. Phys Ther. 2002 Sep;82(9):888-97. — View Citation
Plummer P, Eskes G, Wallace S, Giuffrida C, Fraas M, Campbell G, Clifton KL, Skidmore ER; American Congress of Rehabilitation Medicine Stroke Networking Group Cognition Task Force. Cognitive-motor interference during functional mobility after stroke: state of the science and implications for future research. Arch Phys Med Rehabil. 2013 Dec;94(12):2565-2574.e6. doi: 10.1016/j.apmr.2013.08.002. Epub 2013 Aug 20. — View Citation
Plummer P, Eskes G. Measuring treatment effects on dual-task performance: a framework for research and clinical practice. Front Hum Neurosci. 2015 Apr 28;9:225. doi: 10.3389/fnhum.2015.00225. eCollection 2015. — View Citation
Plummer P, Iyigun G. Effects of Physical Exercise Interventions on Dual-Task Gait Speed Following Stroke: A Systematic Review and Meta-Analysis. Arch Phys Med Rehabil. 2018 Dec;99(12):2548-2560. doi: 10.1016/j.apmr.2018.04.009. Epub 2018 May 5. — View Citation
Plummer P, Osborne MB. What Are We Attempting to Improve When We Train Dual-Task Performance? J Neurol Phys Ther. 2015 Jul;39(3):154-5. doi: 10.1097/NPT.0000000000000097. No abstract available. — View Citation
Plummer P, Zukowski LA, Giuliani C, Hall AM, Zurakowski D. Effects of Physical Exercise Interventions on Gait-Related Dual-Task Interference in Older Adults: A Systematic Review and Meta-Analysis. Gerontology. 2015;62(1):94-117. doi: 10.1159/000371577. Epub 2015 Feb 19. — View Citation
Roche RA, Commins S, Agnew F, Cassidy S, Corapi K, Leibbrand S, Lipson Z, Rickard J, Sorohan J, Wynne C, O'Mara SM. Concurrent task performance enhances low-level visuomotor learning. Percept Psychophys. 2007 May;69(4):513-22. doi: 10.3758/bf03193908. — View Citation
Sanli EA, Lee TD. What roles do errors serve in motor skill learning? An examination of two theoretical predictions. J Mot Behav. 2014;46(5):329-37. doi: 10.1080/00222895.2014.913544. Epub 2014 May 23. — View Citation
Shorer Z, Becker B, Jacobi-Polishook T, Oddsson L, Melzer I. Postural control among children with and without attention deficit hyperactivity disorder in single and dual conditions. Eur J Pediatr. 2012 Jul;171(7):1087-94. doi: 10.1007/s00431-012-1695-7. Epub 2012 Feb 16. — View Citation
Song JH, Bedard P. Paradoxical benefits of dual-task contexts for visuomotor memory. Psychol Sci. 2015 Feb;26(2):148-58. doi: 10.1177/0956797614557868. Epub 2014 Dec 10. — View Citation
Strobach T, Frensch P, Muller H, Schubert T. Age- and practice-related influences on dual-task costs and compensation mechanisms under optimal conditions of dual-task performance. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2012;19(1-2):222-47. doi: 10.1080/13825585.2011.630973. Epub 2011 Dec 14. — View Citation
Strobach T, Frensch PA, Soutschek A, Schubert T. Investigation on the improvement and transfer of dual-task coordination skills. Psychol Res. 2012 Nov;76(6):794-811. doi: 10.1007/s00426-011-0381-0. Epub 2011 Sep 27. — View Citation
Svendsen OL, Haarbo J, Heitmann BL, Gotfredsen A, Christiansen C. Measurement of body fat in elderly subjects by dual-energy x-ray absorptiometry, bioelectrical impedance, and anthropometry. Am J Clin Nutr. 1991 May;53(5):1117-23. doi: 10.1093/ajcn/53.5.1117. — View Citation
Wajda DA, Mirelman A, Hausdorff JM, Sosnoff JJ. Intervention modalities for targeting cognitive-motor interference in individuals with neurodegenerative disease: a systematic review. Expert Rev Neurother. 2017 Mar;17(3):251-261. doi: 10.1080/14737175.2016.1227704. Epub 2016 Sep 12. — View Citation
Woollacott M, Shumway-Cook A. Attention and the control of posture and gait: a review of an emerging area of research. Gait Posture. 2002 Aug;16(1):1-14. doi: 10.1016/s0966-6362(01)00156-4. — View Citation
Wu T, Liu J, Hallett M, Zheng Z, Chan P. Cerebellum and integration of neural networks in dual-task processing. Neuroimage. 2013 Jan 15;65:466-75. doi: 10.1016/j.neuroimage.2012.10.004. Epub 2012 Oct 11. — View Citation
* Note: There are 54 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Change in Timed Up and Go Tests in 4 week increments | Timed Up and Go, and Timed Up and Go Cognitive | Baseline, Week 4, and Week 8 | |
Primary | Change in 10 meter walk test self-selected pace in 4 week increments | self selected pace walking over an instrumented mat (ZenoMat) both single task and while counting serial 3's | Baseline, Week 4, and Week 8 | |
Primary | Change in Cognition in 4 week increments | Components of Cognitive Fluidity as measured by the NIH Toolbox Cognitive Battery | Baseline, Week 4, and Week 8 | |
Secondary | Balance Test Performance in 4 week increments | Single Leg Stand with and without Cognitive Task | Baseline, Week 4, and Week 8 | |
Secondary | change in 10 meter walk test fast pace in 4 week increments | Walking as fast as possible without running an instrumented mat (ZenoMat) both single task and while counting serial 3's | Baseline, Week 4, and Week 8 | |
Secondary | Change in Muscle Electromyography in 4 week increments | Surface electromyography (sEMG) will be obtained by placing wireless Delsys Trigno electrodes on the skin over the muscles of the lower extremities (tibialis anterior, lateral gastrocnemius, Rectus Femoris, Vastus Medialis, Lateral Hamstrings, and Gluteus Maximus). EMG will used to measure muscle activity during the cognitive-motor dual-task in order to measure changes in neuromuscular control strategy as subjects learn to perform the task. | Baseline, Week 4 and Week 8 |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05596474 -
Effect of Beet-root Juice and PBM Treatments on Muscle Fatigue
|
N/A | |
Active, not recruiting |
NCT05203848 -
Community Dance Program (CDP) for Older Adults
|
Phase 1 | |
Not yet recruiting |
NCT06455982 -
Reduced Carbohydrates + Ketogenic Supplement on Energy Metabolism
|
N/A | |
Completed |
NCT04084457 -
Investigating the Effects of Daily Consumption of Blueberry (Poly)Phenols on Vascular Function and Cognitive Performance
|
N/A | |
Recruiting |
NCT05006261 -
A Mobile Tai Chi Platform for Fall Prevention in Older Adults - Phase II
|
N/A | |
Active, not recruiting |
NCT04262674 -
Non-invasive, Wearable Multi-parameter System for the Early Prediction of Cognitive Decline and Dementia in Older Adults
|
N/A | |
Completed |
NCT02218411 -
Video-supported Group-based Otago Exercise Programme on Physical Performance in Older Adults.
|
Phase 1 | |
Active, not recruiting |
NCT05961319 -
Smart Home Technologies for Assessing and Monitoring Frailty in Older Adults
|
||
Completed |
NCT05213091 -
The Effect of Otago Exercises in the Elderly
|
N/A | |
Active, not recruiting |
NCT04904068 -
Functional Neuroimaging in Parkinson's Disease
|
||
Completed |
NCT04348162 -
Food Anthocyanins and Flavanols as a Strategy for a Healthy Ageing: Cardiovascular Health and Cognitive Performance
|
N/A | |
Completed |
NCT05941143 -
Effect of Mindfulness on EEG Brain Activity for Cognitive and Psychological Well-being in the Elderly
|
N/A | |
Completed |
NCT06022094 -
Effect of a Two-month Carbohydrate-restricted Diet on Energy Metabolism in a Seniors' Residence
|
N/A | |
Active, not recruiting |
NCT06162871 -
Social Participation and Healthy Aging
|
N/A | |
Completed |
NCT05207501 -
Effects of Different Moderate-intensity Exercise Methods on Health in the Elderly
|
N/A | |
Recruiting |
NCT04986787 -
Novel, Individualized Brain Stimulation, Network-based Approaches to Improve Cognition
|
N/A | |
Completed |
NCT05933798 -
China Pilot of ICOPE (Integrated Care for Older People) in Chaoyang
|
N/A | |
Recruiting |
NCT05394363 -
Generation Victoria Cohort 2020s: A Statewide Longitudinal Cohort Study of Victorian Children and Their Parents
|
||
Completed |
NCT04786665 -
Strawberries, Cognition, and Vascular Health
|
N/A | |
Completed |
NCT05290571 -
Modified Otago Exercise Program on Balance Performance
|
N/A |