Healthy Aging Clinical Trial
Official title:
Evaluating the Neurocomputational Mechanisms of Explore-Exploit Decision Making in Older Adults
The full experiment involves participants coming into the lab on five separate occasions for neuropsychological testing, a decision making battery, functional and structural MRI, and two TMS sessions for stimulation of the target or control stimulation site. The clinical trial component concerns only the last two sessions where subjects will be randomly assigned to different groups to receive different TMS interventions. In particular, the TMS experiments will ask two main questions: 1. What is the causal role of frontal pole in explore-exploit behavior in younger and older adults? 2. What is the causal role of IFG in explore-exploit behavior in younger and older adults? The investigators will use continuous theta-burst transcranial magnetic stimulation (cTBS, Huang et al. 2005) to inhibit neural activity in each region for approximately 50 minutes (Wischnewski & Schutter, 2015) and measure the downstream effects on behavior in younger and older adults. Consistent with their respective roles in the explore-exploit circuit (Figure 5 in Research Strategy), the investigators predict that inhibition of frontal pole will lead to a selective reduction in directed, but not random, exploration, while inhibition of IFG will decrease exploitation and lead to increases in both types of exploration. Participants in each age group will be pseudo-randomly assigned to either the frontal pole group or IFG group such that the study will have 42 participants (21 males, 21 females) in each group. Thus there will be four distinct groups of subjects older frontal pole, younger frontal pole, older IFG, younger IFG. Each participant will take part in two TMS sessions, one target and one control session. The order of sessions will be counterbalanced across subjects. The primary endpoints of the study are to determine whether: 1. cTBS applied to frontal pole inhibits directed exploration within the younger and older groups 2. cTBS applied to IFG promotes both directed and random exploration within the younger and older groups The study is powered to answer these questions with 80% power at a threshold of p < 0.05.
Status | Recruiting |
Enrollment | 240 |
Est. completion date | December 2024 |
Est. primary completion date | June 2024 |
Accepts healthy volunteers | Accepts Healthy Volunteers |
Gender | All |
Age group | 18 Years to 80 Years |
Eligibility | Inclusion Criteria: - Male or female aged 18-30 (younger adults) or 65-74 (older adults) - No subjective memory complaints - Fluent in English or formal education in English starting from at least the age of 5 - Telephone Interview for Cognitive Status (TICS) score > 31 - Montreal Cognitive Assessment (MoCA) > 25 - Score = 10 on the Hamilton Depression Rating Scale (Hamilton, 1960) - No significant neurological, psychiatric, medical illness or injury that would affect cognitive function - No history of concussion with greater than 5 minutes of loss of consciousness - No history of a psychoactive substance use disorder - Able and willing to provide informed consent Exclusion Criteria: - Subjective memory complaints - Telephone Interview for Cognitive Status (TICS) score less than or equal to 31 - Montreal Cognitive Assessment (MoCA) less than or equal to 25 - Score less than one standard deviation below the age, education, and sex adjusted mean from the NACC UDS version 3 normative cohort (Albert et al. 2011; McKhann et al., 2011 - Criteria for DSM-5 diagnosis or history of serious psychiatric disease or diagnosed learning disabilities - Any other neurological, psychiatric, or medical illness or injury expected to interfere with cognitive function or memory including but not limited to stroke (diagnosed with evidence of stroke), head injury, epilepsy, Parkinson's, brain cancer, depression. Migraines OK. May have TIAs with no sign of impairment and no sequelae following the event - Active substance abuse disorder i.e. alcohol, nicotine. Previous substance abuse of cocaine, Ecstasy, LSD, IV drugs - History of seizure disorder as child or currently experiencing or on medications for seizures. Exception is febrile seizures as a child. - Currently taking the following medications, which are contraindications for TMS: tricyclic antidepressants (Amitriptyline, Clomipramine, Doxepine, Imapramine, Maprotiline, Nortriptyline), anti-psychotic medication (Clozapine), Anti-virals (Foscarnet, Ganciclovir, Ritonavir), Bronchodilator (Theophylline), Amphetamines, gamma-Hydroxybutyrate, Ketamine - Have recently stopped taking the following medications, which are contraindications for TMS: Alcohol, Benzodiazepines, Barbiturates, Chloral Hydrate, Meprobamate - Any condition which may prevent the subject from adhering to the study protocol, as determined by the PI, i.e. reported learning disability, cataracts impairing vision, colorblindness. - The presence of any metallic implant or foreign body, including dental bridges excludes participants from MRI. Removable body piercings/implants okay. Movement disorders that prevent the subject from being still for the MRI. Other contraindications to MRI including being a professional metal worker or welder, having recurring panic attacks or being claustrophobic, being pregnant, or an abnormally high weight or height to fit in scanner. Patients with these MRI contraindications will not be enrolled. |
Country | Name | City | State |
---|---|---|---|
United States | University of Arizona | Tucson | Arizona |
Lead Sponsor | Collaborator |
---|---|
University of Arizona | National Institute on Aging (NIA) |
United States,
Daw ND, O'Doherty JP, Dayan P, Seymour B, Dolan RJ. Cortical substrates for exploratory decisions in humans. Nature. 2006 Jun 15;441(7095):876-9. — View Citation
Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron. 2005 Jan 20;45(2):201-6. doi: 10.1016/j.neuron.2004.12.033. — View Citation
Rossi S, Hallett M, Rossini PM, Pascual-Leone A; Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. 2009 Dec;120(12):2008-2039. doi: 10.1016/j.clinph.2009.08.016. Epub 2009 Oct 14. — View Citation
Wilson RC, Geana A, White JM, Ludvig EA, Cohen JD. Humans use directed and random exploration to solve the explore-exploit dilemma. J Exp Psychol Gen. 2014 Dec;143(6):2074-81. doi: 10.1037/a0038199. Epub 2014 Oct 27. — View Citation
Wischnewski M, Schutter DJ. Efficacy and Time Course of Theta Burst Stimulation in Healthy Humans. Brain Stimul. 2015 Jul-Aug;8(4):685-92. doi: 10.1016/j.brs.2015.03.004. Epub 2015 Mar 26. — View Citation
Zajkowski WK, Kossut M, Wilson RC. A causal role for right frontopolar cortex in directed, but not random, exploration. Elife. 2017 Sep 15;6. pii: e27430. doi: 10.7554/eLife.27430. — View Citation
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Directed exploration | Change in directed exploration as a result of stimulation to target vs control site. Directed exploration will be measured using the Horizon Task (Wilson et al. 2014) in which directed exploration is defined as the change in p(high info) between horizon 1 and horizon 6. | Between TMS session 1 and TMS session 2 (1-2 weeks) | |
Primary | Random exploration | Change in random exploration as a result of stimulation to target vs control site. Random exploration will be measured using the Horizon Task (Wilson et al. 2014) in which random exploration is defined as the change in p(low mean) between horizon 1 and horizon 6. | Between TMS session 1 and TMS session 2 (1-2 weeks) |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05596474 -
Effect of Beet-root Juice and PBM Treatments on Muscle Fatigue
|
N/A | |
Active, not recruiting |
NCT05203848 -
Community Dance Program (CDP) for Older Adults
|
Phase 1 | |
Not yet recruiting |
NCT06455982 -
Reduced Carbohydrates + Ketogenic Supplement on Energy Metabolism
|
N/A | |
Completed |
NCT04084457 -
Investigating the Effects of Daily Consumption of Blueberry (Poly)Phenols on Vascular Function and Cognitive Performance
|
N/A | |
Recruiting |
NCT05006261 -
A Mobile Tai Chi Platform for Fall Prevention in Older Adults - Phase II
|
N/A | |
Active, not recruiting |
NCT04262674 -
Non-invasive, Wearable Multi-parameter System for the Early Prediction of Cognitive Decline and Dementia in Older Adults
|
N/A | |
Completed |
NCT02218411 -
Video-supported Group-based Otago Exercise Programme on Physical Performance in Older Adults.
|
Phase 1 | |
Active, not recruiting |
NCT05961319 -
Smart Home Technologies for Assessing and Monitoring Frailty in Older Adults
|
||
Completed |
NCT05213091 -
The Effect of Otago Exercises in the Elderly
|
N/A | |
Active, not recruiting |
NCT04904068 -
Functional Neuroimaging in Parkinson's Disease
|
||
Completed |
NCT04348162 -
Food Anthocyanins and Flavanols as a Strategy for a Healthy Ageing: Cardiovascular Health and Cognitive Performance
|
N/A | |
Completed |
NCT05941143 -
Effect of Mindfulness on EEG Brain Activity for Cognitive and Psychological Well-being in the Elderly
|
N/A | |
Completed |
NCT06022094 -
Effect of a Two-month Carbohydrate-restricted Diet on Energy Metabolism in a Seniors' Residence
|
N/A | |
Active, not recruiting |
NCT06162871 -
Social Participation and Healthy Aging
|
N/A | |
Completed |
NCT05207501 -
Effects of Different Moderate-intensity Exercise Methods on Health in the Elderly
|
N/A | |
Recruiting |
NCT04986787 -
Novel, Individualized Brain Stimulation, Network-based Approaches to Improve Cognition
|
N/A | |
Completed |
NCT05933798 -
China Pilot of ICOPE (Integrated Care for Older People) in Chaoyang
|
N/A | |
Recruiting |
NCT05394363 -
Generation Victoria Cohort 2020s: A Statewide Longitudinal Cohort Study of Victorian Children and Their Parents
|
||
Completed |
NCT04786665 -
Strawberries, Cognition, and Vascular Health
|
N/A | |
Completed |
NCT05290571 -
Modified Otago Exercise Program on Balance Performance
|
N/A |