Clinical Trials Logo

Clinical Trial Summary

After potential subjects determine that they would like surgical treatment of their great toe arthritis, study staff will approach them about the study. If subject decides to participate, they will be asked to fill out an informed consent. After the informed consent has been signed, study staff will collect subject demographics and medical/surgical history. The subject will be randomized into one of two surgical treatment options: cheilectomy or Cartiva hemiarthroplasty. The randomization ratio will be 1:1 and to ensure this randomization ratio, each randomization block will have 4-6 patients. After the surgery, the subject will have follow up visits at 2 weeks, 6 weeks, 3 months, 1 year, and 2 years post surgery. At these follow up visits, subjects will have a physical exam conducted, have their medical imaging reviewed, and fill out a data collection form which will include questionnaires and adverse event forms (when applicable). All of the above will apply to the 2 week visit, except for the administration of questionnaires/surveys. Additionally, subjects will have incision check, suture removal, and a physical completed during this visit.All study procedures for this study are considered standard of care. Patients would have these completed regardless of participation in the study.


Clinical Trial Description

Hallux Rigidus is a common disorder that affects an estimated 1 in 40 people over the age of 50.4 While debate remains about the primary cause of this disorder, it is likely multifactorial with contributing factors including previous trauma, malalignment and underlying genetic influences.5 Regardless of the cause, the disorder can become progressive and significantly impact a patient's quality of life. Common symptoms include pain, swelling and limited range of motion. Patients often present with pain dorsally over the first metatarsophalangeal (MTP) joint secondary to osteophyte formation and swelling. This can restrict range of motion at this joint, as well as make daily activities, such as wearing closed-toed shoes, quite difficult.6 Furthermore, continued pain can lead to gait abnormalities with more weight bearing through the lateral aspect of the foot and potential transfer metatarsalgia.7 Along with physical exam to identify first MTP range of motion, joint swelling, erythema and palpable osteophyte formation, radiographic evaluation is part of the standard of care in hallux rigidus evaluation. Coughlin and Shurnas proposed a grading system that has become widely used, based on the radiographic findings and range of motion at the MTP joint.8 The grading system allowed clinicians to characterize patients from grade 0-4, helping guide treatment decisions. Initial treatment is centered on pain relief with non-operative modalities. Modified shoe wear, custom orthotics with a Morton extension and activity modifications have all been shown to improve symptoms in some patients.7 For patients that fail non-operative therapies, a wide array of surgical options exist. For patients with Grade 1 and 2 hallux rigidus, joint sparing procedures have been primarily used, with the most common procedure being Cheilectomy. The Cheilectomy procedure involves removal of the dorsal osteophytes and 20-30% of the dorsal metatarsal head.3 The benefits of this procedure include the ability to improve joint mobility, while still leaving the potential for future fusion. Success rates have been reported between 72% and 100% in patients with grade 1 and 2 hallux rigidus.7 Controversy remains regarding cheilectomy in patients with grade 3 hallux rigidus however. Nicolosi et al found an average satisfaction rate of 85% in patients with grade 3 disease undergoing cheilectomy3. Additional studies, however have suggested high failure and revision rates in patients with grade 3 hallux rigidus.3 Joint fusion has become common place in the treatment of advanced stage hallux rigidus, including grade 3 and 4. High fusion rates and patient satisfaction has been proven with fusion procedures in the first MTP joint.7 However, the loss of motion at the first MTP joint associated with the fusion procedure can interfere with activities such as running and jumping, and can make shoe wear choices difficult2. These limitations led to the push for development of a joint replacement procedure, allowing for pain control and continued motion. The use of silicone-based joint replacement has been met with mixed results, however concerns over the durability leading to implant fracture, osteolysis and difficulty of revision procedures has ultimately limited its use.9 Ceramic implants were found to have good short-term results, however concerns remain regarding the large amount of subsidence seen in follow up, as well as potential osteolysis10. Furthermore, the amount of bone stock remaining following this procedure could make revision procedures quite challenging. Given these mixed results, there remained a significant drive to identify a joint replacement-type procedure with a device that could maintain adequate bone stock, preserve motion and withstand the daily stresses the first MTP joint faces. This led to the use of the Cartiva implant, a polyvinyl alcohol hydrogel implant. Following extensive safety and wear testing, it was determined that this implant would be well suited for use in patients with hallux rigidus. Indicated for grade 2, 3 and 4 hallux rigidus, the initial study of Cartiva effectiveness compared outcomes of the implant versus arthrodesis. The prospective, randomized control trial evaluated 202 patients, with over 2/3 undergoing the Cartiva procedure.2 Both short and midterm outcomes were very promising. 5-year revision rates were found to be 5% with no evidence of implant loosening or surrounding bone complication.11 Additionally, the Cartiva implant was found to be equivalent to the gold standard, arthrodesis, when it came to post-operative patient outcome scores, range of motion and complications.2 With promising results from initial clinical trials, further evaluation into the efficacy and indications for Cartiva is necessary. To date, there is no published literature comparing Cheilectomy to Cartiva. Both procedures have shown to have beneficial results in patients with grade 2 hallux rigidus, yet it is unclear if one procedure would be preferred in this population or certain subsets of patients. With an estimated revision rate around 9% following Cheilectomy, it is possible that Cartiva could decrease the need for additional procedures. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT03935880
Study type Interventional
Source University of Wisconsin, Madison
Contact
Status Terminated
Phase N/A
Start date April 15, 2019
Completion date September 27, 2021

See also
  Status Clinical Trial Phase
Not yet recruiting NCT04473196 - The Effect of Weight Bearing on Patient Outcomes Following 1st MTP Joint Fusion N/A
Recruiting NCT05555459 - Performance and Safety Evaluation of Inion CompressOn Screw in Foot and Ankle Surgeries. PMCF Investigation N/A
Active, not recruiting NCT04590313 - Efficacy of First MTPJ Arthrodesis as a Treatment in Hallux Rigidus N/A
Completed NCT02904447 - Plantar Forces Mid-term After Hemiarthroplasty With HemiCap for Hallux Rigidus N/A
Completed NCT01804491 - Motion Analysis in Patients With Hallux Rigidus N/A
Terminated NCT04103814 - Effect of Topical CBD Cream for Degenerative Hallux Disorders Phase 2/Phase 3
Active, not recruiting NCT05795127 - Risk for Reoperation After First MTP Joint Arthrodesis
Recruiting NCT03133039 - A New Type of Bioabsorbable Screw in the Hallux Valgus Surgery N/A
Completed NCT05641038 - Comparison Of The Efficiencies Of Peloid and Paraffine Treatments In Patients With Hallux Rigidus N/A
Recruiting NCT05692687 - A Post-market Clinical Study to Evaluate the Safety and Performance of the Carbon Fibre Reinforced Polyetheretherketone Metatarso-Phalangeal (MTP) Plate (CoLink® PCR MTP Plate) for the Treatment of Hallux Rigidus
Recruiting NCT06331741 - Collagen for Treatment of Musculoskeletal Injuries N/A
Withdrawn NCT05518721 - Synthetic Cartilage Implant Versus Interposition Arthroplasty in Hallux Rigidus Treatment: A Randomized Clinical Trial N/A
Terminated NCT02499575 - Pericapsular Exparel for Pain Relief in Bunionectomy and Related Procedures N/A
Completed NCT01048450 - Surgical Treatment for Hallux Rigidus N/A
Active, not recruiting NCT06180408 - Foot Spine Syndrome "RAFFET Syndrome" N/A
Completed NCT01284985 - Short Term Follow-up of Patient Implanted With the Metatarso-Phalangeal Prosthesis METIS® N/A
Recruiting NCT01028469 - Artelon Metatarsophalangeal (MTP) Spacer Phase 4
Recruiting NCT03616847 - Comparison of Different Tourniquet Release Times in Bunion Surgery N/A
Completed NCT01825356 - Amniotic Membrane as an Adjunct Treatment for Hallux Rigidus Phase 4
Completed NCT04833608 - Managing Pain in Patients With MTP Arthritis N/A