Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT05375318
Other study ID # BIOhabitats
Secondary ID
Status Recruiting
Phase
First received
Last updated
Start date March 1, 2021
Est. completion date July 1, 2022

Study information

Verified date February 2022
Source Universitat Politècnica de València
Contact María del Mar Álvarez-Torres
Phone 669933613
Email maaltor4@upv.es
Is FDA regulated No
Health authority
Study type Observational

Clinical Trial Summary

The main purposes of this study are: I. To assess that the four habitats within the tumor (HAT and LAT) and edema (IPE and VPE) in high-grade glioma are different at vascular, tissular, cellular and molecular levels. II. To analyze the associations between the perfusion imaging markers and relevant molecular markers at the HTS habitats for high-grade glioma diagnosis, prognosis/aggressiveness, progression and/or prediction. III. To analyze the associations between the perfusion imaging markers and immune markers at the HTS habitats useful in immunotherapy evaluation and/or patient selection. IV. To prospectively validate the prognostic capacity (association with OS and PFS) and stratification capacity of the perfusion imaging markers calculated at the HTS habitats.


Description:

High-grade glioma (HGG) are the most aggressive malignant primary brain tumor in adults with a median survival rate of 12-15 months. It still carries a poor prognosis despite aggressive treatment, which includes tumor resection followed by chemo-radiotherapy cycles. The inter-patient and intra-patient tumor heterogeneity is one of the responsible factors for the high aggressiveness of solid malignant tumors and their resistance against effective therapies. Due to the extremely complex and heterogeneous biology of this tumor, the same treatment for all approach does not work well in this disease, and standard of care is not always the best option, calling for precision medicine to select the best therapeutic option in the right moment to each patient. This requires quantitative medical imaging, patient profiling, prognosis estimation, and expected response to treatment for objective decision making along with the patient management. The Hemodynamic Tissue Signature (HTS) methodology, included in the ONCOhabitats site (www.oncohabitats.upv.es), provides an automated unsupervised method to describe the heterogeneity of the enhancing tumor and edema areas in terms of the angiogenic process located at these regions. HTS considers 4 habitats within the tumour: 1) the HAT habitat, which refers to the high angiogenic enhancing tumor part of the tumour, 2) the LAT habitat, which refers to the less angiogenic enhancing tumor area of the tumour, 2) the IPE habitat, which refers to the potentially infiltrated peripheral edema, and 4) the VPE habitat, which refers to the vasogenic peripheral edema of the tumour (Juan-Albarracin et al, 2016). Perfusion imaging markers, such as relative cerebral blood volume, can be calculated from these different vascular habitats, and they have been proven as clinically relevant for prognosis. The HTS methodology, as well as the prognostic capacity of these perfusion imaging markers, have been validated with a retrospective multicenter study that included 184 high-grade glioma patients from 7 European centers. Furthermore, relevant associations have been found between the perfusion markers and clinical-routine biomarkers, such as IDH mutation, MGMT methylation (Fuster-Garcia et al, 2020), molecular subtype or microvessel area. Considering these promising results and, in order to develop a decision support system based on pixel level Artificial Intelligent models for deciding treatment in high-grade glioma, it is necessary to develop a prospective study and to validate at biological level the vascular habitats defined by the HTS methodology. The proposed objectives are based on the following hypothesis: I. Since the tumor and edema HTS habitats (HAT, LAT, IPE and VPE) have been proven as different in relation to their hemodynamic and vascular behavior, the main hypothesis are that these are habitats are also significantly different at the vascular, tissular, cellular and molecular level. II. Significant associations between the perfusion imaging markers calculated with the HTS methodology and both molecular and histopathological markers (useful in prognosis, monitoring and evaluation of therapies) have been found in previous studies. Therefore, the hypothesis are that relevant associations between the imaging markers and clinical-routine biomarkers, such as molecular and histopathological markers, exist. III. Preliminary studies have shown associations between the perfusion imaging markers and molecular markers related with the immune action/suppression. In addition, previous works have demonstrated that immune and genomic correlates of response to immunotherapy treatments, such as anti-PD-1, in glioblastoma. Therefore, to find correlations between these immune and genomic signatures with perfusion imaging markers can be useful for decision making and evaluation of immunotherapies. IV. Preliminary retrospective studies have demonstrated robust association between the perfusion imaging markers calculated at high and low angiogenic habitats and patient overall survival. These robust associations between the perfusion imaging markers and survival times will be demonstrated with a prospective study.


Recruitment information / eligibility

Status Recruiting
Enrollment 50
Est. completion date July 1, 2022
Est. primary completion date February 1, 2022
Accepts healthy volunteers No
Gender All
Age group 18 Years and older
Eligibility Inclusion Criteria: Patients diagnosed with Astrocitoma, Grade 4, cIMPACT-NOW: update 6 classification with histopathological/genetic confirmation who undergo the Stupp treatment - Age > 18 years at diagnosis - Patients with access to complete pre-operative MRI studies, including: - Pre gadolinium T1-weighted MRI - Post gadolinium T1-wighted MRI - T2-weighted MRI - T2-Fluid-Attenuated Inversion Recovery (FLAIR) - Dynamic Susceptibility Contrast (DSC) T2*-weighted perfusion sequences - Diffusion Weighted Imaging (DWI) - Patients who undergo surgery with the possibility to collect samples from different regions of the tumor Exclusion Criteria: 6 - Patient with congestive heart failure within 6 months prior to study entry (New York Heart Association >= Grade 3) - Uncontrolled or significant cardiovascular disease, including: - Myocardial infarction and transient ischemic attack or stroke within 6 months prior to enrollment - Uncontrolled angina within 6 months - Diagnosed or suspected congenital long QT syndrome - Any history of clinically significant ventricular arrhythmias (such as ventricular tachycardia, ventricular fibrillation, or Torsades de pointes) - Clinically significant abnormality on electrocardiogram (ECG) - Pulmonary disease including or greater than grade 2 dyspnea or laryngeal edema, grade 3 pulmonary edema or pulmonary hypertension according to CTCAE 4.03

Study Design


Related Conditions & MeSH terms


Locations

Country Name City State
Spain Biomedical Data Science Lab. Universitat Politècnica de València Valencia

Sponsors (3)

Lead Sponsor Collaborator
Juan M Garcia-Gomez Hospital Clínico Universitario de Valencia, Hospital Universitario 12 de Octubre

Country where clinical trial is conducted

Spain, 

Outcome

Type Measure Description Time frame Safety issue
Primary Molecular profile of each vascular habitat biopsied for each included patient Molecular profile of each vascular habitat biopsied for each included patient, including main molecular alterations typically found in astrocytoma grade 4 through study completion, an average of 1 year
Primary Description at cellular level of each vascular habitat biopsied for each included patient, including cell types and cell density Description at cellular level of each vascular habitat biopsied for each included patient, including cell types and cell density through study completion, an average of 1 year
Primary Description at histopathological level of each vascular habitat biopsied for each included patient, including tissues, necrosis, vascularuture Description at histopathological level of each vascular habitat biopsied for each included patient, including tissues, necrosis, vascularuture through study completion, an average of 1 year
See also
  Status Clinical Trial Phase
Recruiting NCT05664243 - A Phase 1b / 2 Drug Resistant Immunotherapy With Activated, Gene Modified Allogeneic or Autologous γδ T Cells (DeltEx) in Combination With Maintenance Temozolomide in Subjects With Recurrent or Newly Diagnosed Glioblastoma Phase 1/Phase 2
Completed NCT02768389 - Feasibility Trial of the Modified Atkins Diet and Bevacizumab for Recurrent Glioblastoma Early Phase 1
Recruiting NCT05635734 - Azeliragon and Chemoradiotherapy in Newly Diagnosed Glioblastoma Phase 1/Phase 2
Completed NCT03679754 - Evaluation of Ad-RTS-hIL-12 + Veledimex in Subjects With Recurrent or Progressive Glioblastoma, a Substudy to ATI001-102 Phase 1
Completed NCT01250470 - Vaccine Therapy and Sargramostim in Treating Patients With Malignant Glioma Phase 1
Terminated NCT03927222 - Immunotherapy Targeted Against Cytomegalovirus in Patients With Newly-Diagnosed WHO Grade IV Unmethylated Glioma Phase 2
Recruiting NCT03897491 - PD L 506 for Stereotactic Interstitial Photodynamic Therapy of Newly Diagnosed Supratentorial IDH Wild-type Glioblastoma Phase 2
Active, not recruiting NCT03587038 - OKN-007 in Combination With Adjuvant Temozolomide Chemoradiotherapy for Newly Diagnosed Glioblastoma Phase 1
Completed NCT01922076 - Adavosertib and Local Radiation Therapy in Treating Children With Newly Diagnosed Diffuse Intrinsic Pontine Gliomas Phase 1
Recruiting NCT04391062 - Dose Finding for Intraoperative Photodynamic Therapy of Glioblastoma Phase 2
Active, not recruiting NCT03661723 - Pembrolizumab and Reirradiation in Bevacizumab Naïve and Bevacizumab Resistant Recurrent Glioblastoma Phase 2
Active, not recruiting NCT02655601 - Trial of Newly Diagnosed High Grade Glioma Treated With Concurrent Radiation Therapy, Temozolomide and BMX-001 Phase 2
Completed NCT02206230 - Trial of Hypofractionated Radiation Therapy for Glioblastoma Phase 2
Completed NCT03493932 - Cytokine Microdialysis for Real-Time Immune Monitoring in Glioblastoma Patients Undergoing Checkpoint Blockade Phase 1
Terminated NCT02709889 - Rovalpituzumab Tesirine in Delta-Like Protein 3-Expressing Advanced Solid Tumors Phase 1/Phase 2
Recruiting NCT06058988 - Trastuzumab Deruxtecan (T-DXd) for People With Brain Cancer Phase 2
Completed NCT03018288 - Radiation Therapy Plus Temozolomide and Pembrolizumab With and Without HSPPC-96 in Newly Diagnosed Glioblastoma (GBM) Phase 2
Not yet recruiting NCT04552977 - A Trail of Fluzoparil in Combination With Temozolomide in Patients With Recurrent Glioblastoma Phase 2
Withdrawn NCT03980249 - Anti-Cancer Effects of Carvedilol With Standard Treatment in Glioblastoma and Response of Peripheral Glioma Circulating Tumor Cells Early Phase 1
Withdrawn NCT02876003 - Efficacy and Safety of G-202 in PSMA-Positive Glioblastoma Phase 2