Glioblastoma Clinical Trial
Official title:
A Phase II Study of Subcutaneous Bevacizumab in Relapsed / Progressive Glioblastoma
STUDY BACKGROUND:
This research will involve patients with glioblastoma. The drug bevacizumab (Avastin) is FDA
approved for the treatment of glioblastoma that gets worse after standard therapy. For
glioblastoma, bevacizumab is given by vein every 14 days. The purpose of this study is to see
if bevacizumab works as well when it is given as a daily subcutaneous shot as it does when
given intravenously. A subcutaneous shot is like an insulin shot or a heparin shot. The dose
of bevacizumab given on this study is in total slightly lower than the FDA approved dose for
glioblastoma.
STUDY DESCRIPTION:
About 10 people will take part in the study. Participants or caregivers will be educated on
injection and given prefilled syringes to take home. Participants or caregivers will
administer bevacizumab subcutaneously each day. The bevacizumab will be stored in the
refrigerator.
Follow up visits will be weekly for the first 3 weeks, then every 3 weeks. After 18 weeks,
the follow up interval can be increased to every 6 weeks at the treating physician's
discretion.
Participants can keep taking the bevacizumab until:
- Tests show that they are not benefiting from it,
- The participant has a bad side effect related to study treatment,
- The participant can no longer comply with study requirements, or
- The participant or doctor feels it is no longer in the participant's best interest.
1.1 Primary Aim: To describe MRI response rate as regards edema and enhancement of
glioblastoma and radiation- related brain enhancement when treated with subcutaneous (SQ)
bevacizumab daily. See section 11 for detail on response assessment.
1.2 Secondary Aims: 1.2.1 To characterize toxicities of SQ bevacizumab. 1.2.2 To describe
response rate as per primary aim (above) in study participants who discontinue SQ bevacizumab
for any reason and go on to receive treatment with standard IV bevacizumab or
bevacizumab-containing combination.
2 BACKGROUND 2.1 Bevacizumab is a monoclonal antibody cancer therapeutic which targets
vascular endothelial growth factor (VEGF) and which has been FDA approved for the treatment
of glioblastoma. Clinical trials of bevacizumab in glioblastoma multiforme (GBM) patients
documented edema and enhancement response rates between 75 and 100%, with consequent
improvement in neurologic symptoms and decrease in corticosteroid requirements.(1-3) The FDA
approval was based on response rate; there has not been proof that bevacizumab prolongs
survival in GBM patients. The related VEGF antagonist cediranib can decrease brain edema in a
manner comparable to bevacizumab(4) but failed to prolong survival in GBM patients in a
recent phase III study.(5) Thus bevacizumab remains strictly palliative for GBM patients, a
disease which in any case is not thought to be curable with available treatments.
2.2 Most monoclonal antibody therapeutics remain effective when given subcutaneously instead
of intravenously.(6-9) Preclinical animal data show this to be true for bevacizumab as well,
with 100% bioavailability for SQ as compared to IV administration.(10) In a mouse tumor
model, SQ bevacizumab produced better antitumor effects than intravenous bevacizumab.(11)
Some treatments are also less toxic when given subcutaneously - a recent example is
bortezomib, which produces less neuropathy when given SQ instead of IV but is just as
effective against myeloma.(12) This is presumably because of lower peak doses. There is no
published correlation between dose of bevacizumab and incidence of the common side effects,
which include hypertension and proteinuria, as well as less common but more dangerous
toxicities such as gut perforation. If these toxicities relate to peak doses obtained after
IV administration, it may be that they are less frequent in a dosing scheme in which SQ
administration yields a low sustained and stable dose. It is not clear what SQ dose of
bevacizumab is necessary to obtain benefit in GBM. Although the FDA approved dose is 10mg/kg
every 14 days, earlier European GBM studies used 5mg/kg every 14 days and produced similar
response rates.(1) This uncertainty about the required dose is, in fact, true for all the
diseases in which bevacizumab is used; an example can be seen in two simultaneously published
phase III ovarian cancer studies, one of which used bevacizumab maintenance at 15mg/kg every
3 weeks and the other half that dose at 7.5mg/kg every 3 weeks, with the lower dose study
actually obtaining improved survival for participants as compared to the higher.(13, 14) It
is possible that at least in GBM, lower doses might be better. Some theorize that the hypoxia
produced by antiangiogenic treatments promote a more aggressive, infiltrative tumor
phenotype. There is some thought that a less complete blockade of VEGF would decrease
consequent hypoxia and conversion to this aggressive phenotype.(15) A recent retrospective
series reported that GBM patients who encounter bevacizumab toxicity and undergo dose
reduction have longer survival than contemporaneously treated GBM patients who continue at
10mg/kg every 14 days.(16) Thus it is ethical and perhaps even beneficial to explore lower
doses of bevacizumab in the treatment of GBM.
2.3 The rapid and nearly universal response rate in GBM patients as regards enhancement and
edema together with the direct palliative benefit of bevacizumab monotherapy makes this an
excellent population to study an alternate dosing scheme. In this study the investigators
propose to study subcutaneous bevacizumab for the treatment of patients with GBM and
progressive edema representing tumor progression or symptomatic radiation aftereffects. All
participants will receive the same dose of 25 mg SQ daily, which would translate into 350 mg
over 14 days or 5mg/kg/14 days for a 70 kg patient - the same total dose used in the European
GBM series and the same dose as is used to treat metastatic colon cancer. Bevacizumab
solution is known to be stable in refrigerated prefilled syringes(17), and participants would
take these home, injecting themselves after the manner of low molecular weight heparin.
Participants would receive weekly toxicity assessment, and MRI at 3 weeks looking for
evidence of response in terms of reduction of enhancement and edema; see section 11. Those
participants with response would continue on SQ bevacizumab as long as they continued to
experience clinical benefit. Participants not responding, progressing after initial response
or encountering toxicity specific to the subcutaneous route of injection or discontinuing
study participation for any reason would be offered conversion to standard IV bevacizumab as
standard of care or other treatments as appropriate and available. Improvement in enhancement
/ edema among participants converting to standard IV bevacizumab or bevacizumab containing
combinations will be followed as a secondary endpoint.
2.4 The study would be done as a Simon 2 stage, with an expected response rate as regards
enhancement / edema of 90%. If fewer than 5 of an initial 6 participants show response the
study will end and the SQ route will be deemed ineffective. If >4 of 6 respond, then accrual
will expand to a total of 13 patients. See section 10.1, below.
2.5 The convenience of a SQ regimen would benefit some patients with GBM. The current
requirement for IV therapy requires the patient to travel to an oncology infusion center and
have IV access placed every other week, which is arduous and cumbersome. In addition, if
bevacizumab were effective SQ for patients with GBM, this would offer the prospect of SQ
bevacizumab being studied in other diseases with the goal of devising all-outpatient regimens
and liberating patients from the infusion center. Examples include ovarian cancer (for which
maintenance bevacizumab monotherapy improves survival), hereditary hemorrhagic
telangiectasia, and in combination with other subcutaneous or oral medicines (e.g.
capecitabine, interferon) for the treatment of metastatic solid tumors.
;
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05664243 -
A Phase 1b / 2 Drug Resistant Immunotherapy With Activated, Gene Modified Allogeneic or Autologous γδ T Cells (DeltEx) in Combination With Maintenance Temozolomide in Subjects With Recurrent or Newly Diagnosed Glioblastoma
|
Phase 1/Phase 2 | |
Completed |
NCT02768389 -
Feasibility Trial of the Modified Atkins Diet and Bevacizumab for Recurrent Glioblastoma
|
Early Phase 1 | |
Recruiting |
NCT05635734 -
Azeliragon and Chemoradiotherapy in Newly Diagnosed Glioblastoma
|
Phase 1/Phase 2 | |
Completed |
NCT03679754 -
Evaluation of Ad-RTS-hIL-12 + Veledimex in Subjects With Recurrent or Progressive Glioblastoma, a Substudy to ATI001-102
|
Phase 1 | |
Completed |
NCT01250470 -
Vaccine Therapy and Sargramostim in Treating Patients With Malignant Glioma
|
Phase 1 | |
Terminated |
NCT03927222 -
Immunotherapy Targeted Against Cytomegalovirus in Patients With Newly-Diagnosed WHO Grade IV Unmethylated Glioma
|
Phase 2 | |
Recruiting |
NCT03897491 -
PD L 506 for Stereotactic Interstitial Photodynamic Therapy of Newly Diagnosed Supratentorial IDH Wild-type Glioblastoma
|
Phase 2 | |
Active, not recruiting |
NCT03587038 -
OKN-007 in Combination With Adjuvant Temozolomide Chemoradiotherapy for Newly Diagnosed Glioblastoma
|
Phase 1 | |
Completed |
NCT01922076 -
Adavosertib and Local Radiation Therapy in Treating Children With Newly Diagnosed Diffuse Intrinsic Pontine Gliomas
|
Phase 1 | |
Recruiting |
NCT04391062 -
Dose Finding for Intraoperative Photodynamic Therapy of Glioblastoma
|
Phase 2 | |
Active, not recruiting |
NCT03661723 -
Pembrolizumab and Reirradiation in Bevacizumab Naïve and Bevacizumab Resistant Recurrent Glioblastoma
|
Phase 2 | |
Active, not recruiting |
NCT02655601 -
Trial of Newly Diagnosed High Grade Glioma Treated With Concurrent Radiation Therapy, Temozolomide and BMX-001
|
Phase 2 | |
Completed |
NCT02206230 -
Trial of Hypofractionated Radiation Therapy for Glioblastoma
|
Phase 2 | |
Completed |
NCT03493932 -
Cytokine Microdialysis for Real-Time Immune Monitoring in Glioblastoma Patients Undergoing Checkpoint Blockade
|
Phase 1 | |
Terminated |
NCT02709889 -
Rovalpituzumab Tesirine in Delta-Like Protein 3-Expressing Advanced Solid Tumors
|
Phase 1/Phase 2 | |
Recruiting |
NCT06058988 -
Trastuzumab Deruxtecan (T-DXd) for People With Brain Cancer
|
Phase 2 | |
Completed |
NCT03018288 -
Radiation Therapy Plus Temozolomide and Pembrolizumab With and Without HSPPC-96 in Newly Diagnosed Glioblastoma (GBM)
|
Phase 2 | |
Withdrawn |
NCT03980249 -
Anti-Cancer Effects of Carvedilol With Standard Treatment in Glioblastoma and Response of Peripheral Glioma Circulating Tumor Cells
|
Early Phase 1 | |
Not yet recruiting |
NCT04552977 -
A Trail of Fluzoparil in Combination With Temozolomide in Patients With Recurrent Glioblastoma
|
Phase 2 | |
Terminated |
NCT02905643 -
Discerning Pseudoprogression vs True Tumor Growth in GBMs
|