Clinical Trials Logo

Clinical Trial Summary

There are preliminary studies that suggest that radiation therapy to areas of the brain containing cancer stem cells (in addition to the area where the tumor was surgically treated) may help patients with high-grade brain tumors live longer. The purpose of this study is to determine whether the addition of stem-cell radiation therapy to the standard chemoradiation will further improve the outcome. The investigators will collect information about the patient's clinical status, disease control, neurocognitive effects, and quality of life during follow-up in our department.

The purpose of the study is to improve the overall survival patients with newly diagnosed malignant brain tumors treated with stem cell radiation therapy and chemotherapy. The investigators will also measure how patients treated with this novel method of radiation therapy do over time in terms of disease control, potential neurocognitive side effects, overall function, and quality of life.


Clinical Trial Description

Even after optimal standard treatment, the outcome for patients suffering from glioblastoma (GB) is currently dismal, and temozolomide adds a modest survival benefit at high monetary cost and is accompanied by considerable toxicity. A possible explanation for the failure of radiotherapy to cure GB is the observation that glioma cells migrate widely into healthy bilateral brain tissue from one or more foci of origin. These isolated cells are not detected by current radiological techniques or even imaging and therefore usually not included into the target volume during radiotherapy. In this present study the investigators would like to test the hypothesis that the dose prescribed to the normal tissue stem cell niche in the adult brain will influence the effectiveness of radiotherapy for patients suffering from HGG/GB as these niches may serve as a harbor for radioresistant glioma stem cells, which are the only cells in a HGG believed to able to repopulate a tumor.

The hypothesis is based on previous reports showing that adult normal tissue stem cells reside in the lateral periventricular regions of the lateral ventricles and animal studies reporting that transformation of normal tissues stem cells but not differentiated cells lead to tumor formation. This unique anatomical pattern of the brain that clearly separates stem cell niches as a potential pool of cancer stem cell (CSC's) from differentiated tissue make this an ideal model system to study the impact of radiation dose given to these stem cell niches. Therefore, prospective, randomized clinical trials are needed to address the efficacy and toxicity of including the CSC-containing subventricular region as additional target volumes into treatment plans for patients suffering from HGG/GB. This intervention could dramatically improve the outcomes of patients suffering from progressive, relapsing disease despite our best efforts currently. ;


Study Design

Endpoint Classification: Safety/Efficacy Study, Intervention Model: Single Group Assignment, Masking: Open Label, Primary Purpose: Treatment


Related Conditions & MeSH terms


NCT number NCT02039778
Study type Interventional
Source Beth Israel Medical Center
Contact
Status Terminated
Phase Phase 1/Phase 2
Start date December 2013
Completion date December 2015

See also
  Status Clinical Trial Phase
Recruiting NCT05664243 - A Phase 1b / 2 Drug Resistant Immunotherapy With Activated, Gene Modified Allogeneic or Autologous γδ T Cells (DeltEx) in Combination With Maintenance Temozolomide in Subjects With Recurrent or Newly Diagnosed Glioblastoma Phase 1/Phase 2
Completed NCT02768389 - Feasibility Trial of the Modified Atkins Diet and Bevacizumab for Recurrent Glioblastoma Early Phase 1
Recruiting NCT05635734 - Azeliragon and Chemoradiotherapy in Newly Diagnosed Glioblastoma Phase 1/Phase 2
Completed NCT03679754 - Evaluation of Ad-RTS-hIL-12 + Veledimex in Subjects With Recurrent or Progressive Glioblastoma, a Substudy to ATI001-102 Phase 1
Completed NCT01250470 - Vaccine Therapy and Sargramostim in Treating Patients With Malignant Glioma Phase 1
Terminated NCT03927222 - Immunotherapy Targeted Against Cytomegalovirus in Patients With Newly-Diagnosed WHO Grade IV Unmethylated Glioma Phase 2
Recruiting NCT03897491 - PD L 506 for Stereotactic Interstitial Photodynamic Therapy of Newly Diagnosed Supratentorial IDH Wild-type Glioblastoma Phase 2
Active, not recruiting NCT03587038 - OKN-007 in Combination With Adjuvant Temozolomide Chemoradiotherapy for Newly Diagnosed Glioblastoma Phase 1
Completed NCT01922076 - Adavosertib and Local Radiation Therapy in Treating Children With Newly Diagnosed Diffuse Intrinsic Pontine Gliomas Phase 1
Recruiting NCT04391062 - Dose Finding for Intraoperative Photodynamic Therapy of Glioblastoma Phase 2
Active, not recruiting NCT03661723 - Pembrolizumab and Reirradiation in Bevacizumab Naïve and Bevacizumab Resistant Recurrent Glioblastoma Phase 2
Active, not recruiting NCT02655601 - Trial of Newly Diagnosed High Grade Glioma Treated With Concurrent Radiation Therapy, Temozolomide and BMX-001 Phase 2
Completed NCT02206230 - Trial of Hypofractionated Radiation Therapy for Glioblastoma Phase 2
Completed NCT03493932 - Cytokine Microdialysis for Real-Time Immune Monitoring in Glioblastoma Patients Undergoing Checkpoint Blockade Phase 1
Terminated NCT02709889 - Rovalpituzumab Tesirine in Delta-Like Protein 3-Expressing Advanced Solid Tumors Phase 1/Phase 2
Recruiting NCT06058988 - Trastuzumab Deruxtecan (T-DXd) for People With Brain Cancer Phase 2
Completed NCT03018288 - Radiation Therapy Plus Temozolomide and Pembrolizumab With and Without HSPPC-96 in Newly Diagnosed Glioblastoma (GBM) Phase 2
Withdrawn NCT03980249 - Anti-Cancer Effects of Carvedilol With Standard Treatment in Glioblastoma and Response of Peripheral Glioma Circulating Tumor Cells Early Phase 1
Not yet recruiting NCT04552977 - A Trail of Fluzoparil in Combination With Temozolomide in Patients With Recurrent Glioblastoma Phase 2
Terminated NCT02905643 - Discerning Pseudoprogression vs True Tumor Growth in GBMs