Clinical Trials Logo

Clinical Trial Summary

The current study will investigate whether the addition of Neuradiab to surgery, radiation and adjuvant chemotherapy (temozolomide) will improve the survival of patients with glioblastoma and whether the drug regimen is safe.


Clinical Trial Description

In all cases where surgery is a possibility, tumor removal is usually indicated as the first step of therapy for glioblastomas. The goals of such surgery include removal of as much tumor mass as possible and preparation of the tumor bed for adjuvant therapy. Except for deaths arising from adverse surgical events (about 1-2% of surgeries), tumor removal enhances survival times. Unfortunately, without additional therapies, most GBM will recur at or near the original tumor site within several months. Addition of radiotherapy to surgery as part of the treatment regimen enhances survival in most patients compared to surgery alone.

The use and benefits of adjuvant chemotherapy for GBM is controversial. Some studies suggest an enhancement of survival from the use of agents such as carmustine (BCNU) and cisplatin, but generally only about 10-20% of the patient population shows such responses (Stewart 2002). The blood-brain barrier presents a major obstacle to traditional uses of chemotherapy in GBM, and, therefore, some clinical trials are focused on delivery of such agents directly to the brain/tumor mass via catheters with pressure-driven infusion.

At present, only two pharmacologic therapies are approved for the treatment of GBM, Gliadel® and Temodar®. Implantation of BCNU-impregnated wafers (Gliadel Wafer, Guilford Pharmaceuticals, approved by the U.S. Food and Drug Administration (FDA) in 1996) after surgery and radiotherapy was the first pharmacologic-chemotherapeutic therapy for GBM. It has shown very modest enhancements in overall survival (11.6 vs. 13.9 months) when added to a regimen of surgery and radiotherapy (Westphal et al. 2006). In this patient population, these agents demonstrate the typical side effects associated with antineoplastic chemotherapies, and are, therefore, often contraindicated. Nevertheless, despite FDA approval and availability of Gliadel for nearly a decade, its utility remains controversial and it is not routinely used in daily clinical practice. In 2005, the FDA approved the use of temozolomide (Temodar ®, Schering-Plough) given concurrently during and subsequent to radiotherapy for the treatment of newly diagnosed GBM. In a multicenter Phase III trial of 573 GBM patients, radiation alone gave a median survival rate of 12.1 months; the addition of temozolomide led to a median survival of 14.6 months (Stupp et al. NEJM 2005). More importantly, the 2-year survival rate increased from 10% with initial radiation alone to 27% with combined chemo- and radiotherapy. This regimen is considered the standard of care for all patients with newly diagnosed glioblastoma. Ongoing clinical trials are exploring alternative temozolomide administration schedules or combination of this regimen with novel chemotherapy or targeted anti-tumor agents assessing the efficacy of temozolomide alone or in various chemotherapeutic combinations are underway (Herrlinger et al. 2006, Mirimanoff et al. 2006, Stupp et al. 2006, Hau et. al. 2007).

The current study will investigate whether the addition of Neuradiab to surgery, radiation and adjuvant chemotherapy (temozolomide) will improve the survival of patients with glioblastoma and whether the drug regimen is safe. Earlier trials have demonstrated that patient-specific dosimetry yields the best combination of safety and efficacy and will be employed in the current trial. The anti-tenascin monoclonal antibody will bind to tenascin glycoprotein associated with residual neuroblastoma cells, causing the associated radioactive iodine to be fixed in close proximity to the tumor delivering cytocidal local radiotherapy. In this way, it is anticipated that residual tumor cells, which represent the primary reason for treatment failure using conventional therapy, will be destroyed, thus prolonging patient survival. The surgery, radiotherapy, and adjuvant chemotherapy will be administered to the patients in the control arm and represents appropriate therapy for this disorder. In addition, tumor samples will be analyzed for methyl guanine methyl transferase (MGMT) activity to see whether the previously observed and reported correlation with outcome is once again observed (Hegi et. al. 2005). ;


Study Design

Allocation: Randomized, Endpoint Classification: Efficacy Study, Intervention Model: Parallel Assignment, Masking: Open Label, Primary Purpose: Treatment


Related Conditions & MeSH terms


NCT number NCT00615186
Study type Interventional
Source Bradmer Pharmaceuticals Inc.
Contact
Status Terminated
Phase Phase 3
Start date June 2008
Completion date December 2013

See also
  Status Clinical Trial Phase
Active, not recruiting NCT05023551 - Study of DSP-0390 in Patients With Recurrent High-Grade Glioma Early Phase 1
Recruiting NCT06059690 - Biologic Association Between Metabolic Magnetic Resonance-positron Emission Tomograph (MR-PET) and Tissue Measures of Glycolysis in Brain Tumors of Infiltrating Glioblastoma Cells Phase 1/Phase 2
Recruiting NCT04116411 - A Clinical Trial Evaluating the Efficacy of Valganciclovir in Glioblastoma Patients Phase 2
Terminated NCT01902771 - Dendritic Cell Vaccine Therapy With In Situ Maturation in Pediatric Brain Tumors Phase 1
Recruiting NCT03175224 - APL-101 Study of Subjects With NSCLC With c-Met EXON 14 Skip Mutations and c-Met Dysregulation Advanced Solid Tumors Phase 2
Completed NCT02386826 - INC280 Combined With Bevacizumab in Patients With Glioblastoma Multiforme Phase 1
Completed NCT00038493 - Temozolomide and SCH66336 for Recurrent Glioblastoma Multiforme Phase 2
Withdrawn NCT03980249 - Anti-Cancer Effects of Carvedilol With Standard Treatment in Glioblastoma and Response of Peripheral Glioma Circulating Tumor Cells Early Phase 1
Recruiting NCT01923922 - CT Perfusion in the Prognostication of Cerebral High Grade Glioma N/A
Completed NCT01956734 - Virus DNX2401 and Temozolomide in Recurrent Glioblastoma Phase 1
Completed NCT01301430 - Parvovirus H-1 (ParvOryx) in Patients With Progressive Primary or Recurrent Glioblastoma Multiforme. Phase 1/Phase 2
Suspended NCT01386710 - Repeated Super-selective Intraarterial Cerebral Infusion Of Bevacizumab Plus Carboplatin For Treatment Of Relapsed/Refractory GBM And Anaplastic Astrocytoma Phase 1/Phase 2
Completed NCT01402063 - PPX and Concurrent Radiation for Newly Diagnosed Glioblastoma Without MGMT Methylation Phase 2
Active, not recruiting NCT00995007 - A Randomized Phase II Trial of Vandetanib (ZD6474) in Combination With Carboplatin Versus Carboplatin Alone Followed by Vandetanib Alone in Adults With Recurrent High-Grade Gliomas Phase 2
Terminated NCT01044966 - A Study of Intraventricular Liposomal Encapsulated Ara-C (DepoCyt) in Patients With Recurrent Glioblastoma Phase 1/Phase 2
Terminated NCT00990496 - A Study Using Allogenic-Cytomegalovirus (CMV) Specific Cells for Glioblastoma Multiforme (GBM) Phase 1
Completed NCT00402116 - Phase 1/2 Study of Enzastaurin in Newly Diagnosed Glioblastoma Multiforme (GBM) and Gliosarcoma (GS) Patients Phase 1/Phase 2
Completed NCT00112502 - Temozolomide Alone or in Combination With Thalidomide and/or Isotretinoin and/or Celecoxib in Treating Patients Who Have Undergone Radiation Therapy for Glioblastoma Multiforme Phase 2
Completed NCT00504660 - 6-TG, Capecitabine and Celecoxib Plus TMZ or CCNU for Anaplastic Glioma Patients Phase 2
Recruiting NCT05366179 - Autologous CAR-T Cells Targeting B7-H3 in Recurrent or Refractory GBM CAR.B7-H3Tc Phase 1