Gastrointestinal Neoplasms Clinical Trial
Official title:
Cerebral Blood Flow During Propofol Anaesthesia
General anaesthesia often reduces blood pressure whereby blood flow to the brain and other
vital organs may become insufficient. Thus, medicine is often administered during anaesthesia
to maintain blood pressure. However, it is unclear at what level blood pressure should be
aimed at during anaesthesia.
Several factors may affect blood flow to the brain during anaesthesia. During surgery on the
internal organs, a hormone may be released that dilates blood vessels and causes a so-called
mesenteric traction syndrome characterised by a decrease in blood pressure and flushing. This
reaction lasts for approximately thirty minutes and is observed in about half of the patients
who undergo surgery on the stomach and intestines. It is unknown whether a mesenteric
traction syndrome affects blood flow to the brain. Ventilation is also of importance for
blood flow to the brain. Thus, blood flow to the brain is reduced by hyperventilation and
increases if breathing is slower. It is unclear whether the relation between blood flow to
the brain and ventilation is affected during anaesthesia.
This study will evaluate how blood flow to the brain is affected by anaesthesia and standard
treatment of a possible reduction in blood pressure. Further, the study will assess whether
blood flow to the brain is affected by development of a mesenteric traction syndrome. Lastly,
the project will evaluate blood flow to the brain during short-term changes in the patient's
ventilation by adjustments on the ventilator.
Thirty patients planned for major abdominal surgery will be included in the project. The
study will take place from the patient's arrival at the operation room and until two hours
after the start of surgery. Placement of catheters and anaesthesia are according to standard
care. Blood flow to the brain will be evaluated using ultrasound. Oxygenation of the brain,
skin and muscle will be evaluated by probes that emit light. Depth of anaesthesia is assessed
by recording the electrical activity of the brain. Blood pressure is measured by a catheter
placed in an artery at the wrist and blood samples will be drawn from the catheter.
Background General anaesthesia reduces blood pressure, but cerebral autoregulation is
considered to maintain its blood flow if mean arterial pressure (MAP) is between 60-150 mmHg.
Thus, vasoactive medication is administered to treat anaesthesia-induced hypotension if MAP
decreases to below approximately 60 mmHg. In young healthy adults, propofol anaesthesia, with
limited reduction in blood pressure, decreases cerebral blood flow by approximately 50% by a
decrease in neuronal activity. However, it is unknown whether the anaesthesia-induced
reduction in cerebral blood flow is affected by a marked decrease in MAP and whether propofol
anaesthesia affects the lower level of cerebral autoregulation.
If central blood volume is maintained, cerebral oxygenation may be unaffected by a decrease
in MAP to ~40 mmHg whereas a reduction in central blood volume and cardiac output (CO) during
orthostasis or bleeding, reduces cerebral oxygenation when MAP is lower than approximately 80
mmHg. Thus, CO may affect cerebral blood flow and the ability to increase CO is likely of
importance for maintaining a sufficient cerebral blood flow.
During anaesthesia, cerebral blood flow and MAP may be affected by various factors including
release of vasoactive substances. Manipulation of the abdominal organs may induce a so-called
mesenteric traction syndrome (MTS) encompassing a triad of flushing, hypotension, and
tachycardia in about half of the patients who undergo major abdominal surgery. MTS typically
develops 15-20 min after the start of surgery and the haemodynamic manifestations, that
appear to be mediated by prostaglandin I2, last for approximately 30 min. The effect of MTS
on cerebral blood flow is unknown. Prostaglandin I2 dilates cerebral arteries in vitro but
does not affect cerebral blood flow when administered to healthy subjects. In a previous
study we found that MTS increases near-infrared spectroscopy determined frontal lobe
oxygenation possibly due to an increase in extracranial circulation while there was no effect
on middle cerebral artery mean flow velocity as an index of changes in cerebral blood flow.
Propofol anaesthesia appears not to affect the CO2 reactivity of the middle cerebral artery
as determined by transcranial Doppler ultrasonography, but the CO2 reactivity of the internal
carotid artery during propofol anaesthesia is unknown.
Objective The purpose of this study is to evaluate how internal carotid artery blood flow is
affected by propofol anaesthesia and related hypotension, and by administration of
phenylephrine as standard care to treat anaesthesia-induced hypotension. Further, the study
will assess whether internal carotid artery blood flow is affected by development of MTS and
whether propofol anaesthesia affects the CO2 reactivity of the internal carotid artery.
Hypotheses
1. Propofol anaesthesia and related anaesthesia-induced hypotension (MAP < 65 mmHg) reduces
internal carotid artery blood flow
2. Treatment of anaesthesia-induced hypotension by administration of phenylephrine
increases internal carotid artery blood flow
3. Development of MTS increases near-infrared spectroscopy determined frontal lobe
oxygenation due to an increase in forehead skin blood flow and oxygenation with no
effect on internal carotid artery blood flow
4. Propofol anaesthesia lowers the CO2 reactivity of the internal carotid artery
Methods The study will include thirty patients undergoing oesophageal- or ventricular
resection. The study lasts from when the patient arrives to the operating room and until two
hours after the start of surgery. As part of standard care all patients will be instrumented
with arterial and central venous catheters. Anaesthesia will be induced by propofol and
maintained by propofol and remifentanil combined with epidural anaesthesia. Development of
MTS is defined by flushing within the first 60 min of surgery. Measurements include
unilateral internal carotid artery blood flow evaluated by duplex ultrasound, MAP and heart
rate as recorded by a transducer connected to the arterial line, central haemodynamics
(stroke volume, CO, and total peripheral resistance) evaluated by pulse contour analysis of
the arterial pressure curve, frontal lobe and muscle oxygenation as determined by
near-infrared spectroscopy, forehead skin blood flow, haemoglobin concentrations, and
oxygenation assessed by laser Doppler flowmetry, and depth of anaesthesia determined by
Bispectral Index. At each time point 2 measurements of internal carotid artery blood flow are
collected and the mean is taken. Arterial blood will be drawn for analysis of the arterial
CO2 tension (PaCO2).
During the study PaCO2 will be maintained at the value before induction of anaesthesia by
ventilator adjustments. Internal carotid artery CO2 reactivity before induction of
anaesthesia will be determined by evaluations of blood flow and PaCO2 during normoventilation
and during hyperventilation to reduce PaCO2 by 1.5 kPa as guided by end-tidal CO2 tension
(PetCO2) and measurements will be conducted when PetCO2 has been stable for 5 min. The CO2
reactivity during anaesthesia will be determined by evaluations of internal carotid artery
blood flow and PaCO2 at a PaCO2 at the value before induction of anaesthesia and 1.5 kPa
above and below that value as guided by PetCO2 and measurements will be conducted when PetCO2
has been stable for 5 min. The CO2 reactivity before and during anaesthesia is calculated as
the percentage change in internal carotid artery blood flow per kPa change in PaCO2. Analysis
of internal carotid blood flow will be after correction for CO2 reactivity.
Blood samples for analysis of markers of MTS (6-keto-prostaglandin-F1, pro-ANP, ACTH,
cortisone, IL-1, IL-6, and TNF-α) will be drawn before induction of anaesthesia and 20 and 60
min after the start of surgery. Total amount of blood samples will be no more than 75 ml.
Patients will be excluded if the planned surgery is cancelled and excluded patients will be
replaced.
Measurements will be conducted and arterial blood drawn at the following time points:
- Before induction of anaesthesia during normoventilation and hyperventilation
- After induction of anaesthesia
- During anaesthesia-induced hypotension (MAP < 65 mmHg)
- After treatment of anaesthesia-induced hypotension by administration of phenylephrine
- 5 min before and after incision and 0, 20, 40 and 70 min after development of MTS and
20, 40, 60 and 90 min after the start of surgery in patients who did not develop MTS
- During normo-, hyper-, and hypocapnia during anaesthesia in random order
Statistics Trial size: The minimal clinically important difference in internal carotid artery
blood flow by treatment of anaesthesia-induced hypotension is considered to be 10%,
corresponding to approximately 24 ml/min, and twenty-seven patients were considered required
assuming a 42 ml/min SD with a 5% significance level and a power of 80%.
;
Status | Clinical Trial | Phase | |
---|---|---|---|
Active, not recruiting |
NCT05551052 -
CRC Detection Reliable Assessment With Blood
|
||
Terminated |
NCT01624090 -
Mithramycin for Lung, Esophagus, and Other Chest Cancers
|
Phase 2 | |
Completed |
NCT05178095 -
Artificial Intelligence in Colonic Polyp Detection
|
N/A | |
Recruiting |
NCT03602677 -
Indocyanine Green Fluorescence Imaging in Prevention of Colorectal Anastomotic Leakage
|
N/A | |
Not yet recruiting |
NCT05552729 -
Effects of Different Doses of Vitamin D on Cancer-related Cognitive Impairment in Patients With Gastrointestinal Tumors
|
Phase 1/Phase 2 | |
Recruiting |
NCT02871245 -
Clinical Trial on Acupuncture Therapy in Patients With Gastrointestinal Neoplasms Laparoscopic Surgery
|
N/A | |
Completed |
NCT04694521 -
Outcomes of Side-to-end Versus End-to-end Colorectal Anastomosis in Non-emergent Sigmoid and Rectal Cancers: Randomized Controlled Clinical Trial
|
N/A | |
Not yet recruiting |
NCT02860429 -
Clinical Trial of Cinobufacini Injection Combined With Oxaliplatin Regimen on Gastrointestine Carcinoma
|
Phase 4 | |
Completed |
NCT02454647 -
Induction Chemotherapy, Chemoradiotherapy and Surgery in Locally Advanced Gastric Cancer Patients
|
N/A | |
Recruiting |
NCT02196935 -
Los Angeles Prospective GI Biliary and EUS Series
|
||
Completed |
NCT00190801 -
Phase 2 Study on Use of a Combination of Pemetrexed in Patients With Advanced Gastric Carcinoma
|
Phase 2 | |
Completed |
NCT00289445 -
Study With Mitomycin c/5-FU/FA in Pretreated Gastrointestinal Cancer Patients With Metastases (>= Second-line Treatment)
|
Phase 1/Phase 2 | |
Completed |
NCT04010227 -
Telephone Support for Advanced Gastrointestinal Cancer Patients and Caregivers
|
N/A | |
Recruiting |
NCT03330964 -
Clinical Trial of Electroacupuncture Stimulation on Prevention and Treatment of Oxaliplatin Neurotoxicity
|
N/A | |
Recruiting |
NCT04907643 -
Virtual Reality for GI Cancer Pain to Improve Patient Reported Outcomes
|
N/A | |
Recruiting |
NCT05322486 -
Palliative Primary Tumor Resection in Minimally Symptomatic Patients With Colorectal Cancer and Synchronous Unresectable Metastases
|
||
Completed |
NCT03559543 -
Evaluation of Ocoxin®-Viusid® in Metastatic Colorectal Adenocarcinoma
|
Phase 2 | |
Completed |
NCT03549494 -
Evaluation of Ocoxin®-Viusid® in Advanced Stomach Cancer and Gastric Esophagogastric Junction
|
Phase 2 | |
Recruiting |
NCT02672774 -
Novel Endoscopic Imaging Methods for the Evaluation of Blood Vessels in Gastrointestinal Cancers
|
N/A | |
Completed |
NCT02444572 -
Comparison of Thromboembolic Events in Patients Undergoing Thromboprophylactic Treatment With ENOXA® vs Lovenox®
|
Phase 4 |