Gastric Cancer Clinical Trial
Official title:
The Effect of Chemoradiotherapy on Gastric Perfusion in Patients With Gastric Cancer.
Verified date | April 2024 |
Source | Rigshospitalet, Denmark |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
A study from our group (Osterkamp et al. in preparation) used ICG to evaluate intraoperative changes in gastric perfusion when reducing the circulating blood volume by blood withdrawal in pigs. We saw a significant reduction in gastric perfusion with decreased blood volume, and this reduction of gastric perfusion was detectable with ICG. As data from a previous trial (PRESET phase 2 Protocol nr: H-15014904) has shown that chemotherapy decreases the circulating red blood cell volume in patients with gastroesophageal cancer, we wish to evaluate if standard care neoadjuvant chemotherapy also influences gastric perfusion. Gastric perfusion will be assessed during a screening laparoscopy (before chemotherapy) and then compared with a second assessment during gastric resection (after chemotherapy). The gastric perfusion will be measured using fluorescence-guided surgery with Indocyanine Green. Participants will be offered the opportunity to have their blood volume measured during the trial. This is not required in order to take part in the fluorescence angiography part of the study.
Status | Terminated |
Enrollment | 11 |
Est. completion date | December 30, 2023 |
Est. primary completion date | December 29, 2023 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years and older |
Eligibility | Inclusion Criteria: - Patients (above 18 years) scheduled for planned open or robot-assisted resection of gastric cancer. Exclusion Criteria: - Allergy towards; iodine, indocyanine green or shellfish - Severe liver insufficiency - Thyrotoxicosis - Nephropathy requiring dialysis - Pregnancy or lactation - Legally incompetent for any reason - Withdrawal of inclusion consent - Disseminated disease or other that contraindicates curative surgery |
Country | Name | City | State |
---|---|---|---|
Denmark | Rigshospitalet | Copenhagen | Kbh Ø |
Lead Sponsor | Collaborator |
---|---|
Rigshospitalet, Denmark |
Denmark,
Alander JT, Kaartinen I, Laakso A, Patila T, Spillmann T, Tuchin VV, Venermo M, Valisuo P. A review of indocyanine green fluorescent imaging in surgery. Int J Biomed Imaging. 2012;2012:940585. doi: 10.1155/2012/940585. Epub 2012 Apr 22. — View Citation
Alekseev M, Rybakov E, Shelygin Y, Chernyshov S, Zarodnyuk I. A study investigating the perfusion of colorectal anastomoses using fluorescence angiography: results of the FLAG randomized trial. Colorectal Dis. 2020 Sep;22(9):1147-1153. doi: 10.1111/codi.15037. Epub 2020 Apr 6. — View Citation
Baiocchi GL, Diana M, Boni L. Indocyanine green-based fluorescence imaging in visceral and hepatobiliary and pancreatic surgery: State of the art and future directions. World J Gastroenterol. 2018 Jul 21;24(27):2921-2930. doi: 10.3748/wjg.v24.i27.2921. — View Citation
Bell ML, Kenward MG, Fairclough DL, Horton NJ. Differential dropout and bias in randomised controlled trials: when it matters and when it may not. BMJ. 2013 Jan 21;346:e8668. doi: 10.1136/bmj.e8668. — View Citation
Chadi SA, Fingerhut A, Berho M, DeMeester SR, Fleshman JW, Hyman NH, Margolin DA, Martz JE, McLemore EC, Molena D, Newman MI, Rafferty JF, Safar B, Senagore AJ, Zmora O, Wexner SD. Emerging Trends in the Etiology, Prevention, and Treatment of Gastrointestinal Anastomotic Leakage. J Gastrointest Surg. 2016 Dec;20(12):2035-2051. doi: 10.1007/s11605-016-3255-3. Epub 2016 Sep 16. — View Citation
Christensen JF, Jones LW, Tolver A, Jorgensen LW, Andersen JL, Adamsen L, Hojman P, Nielsen RH, Rorth M, Daugaard G. Safety and efficacy of resistance training in germ cell cancer patients undergoing chemotherapy: a randomized controlled trial. Br J Cancer. 2014 Jul 8;111(1):8-16. doi: 10.1038/bjc.2014.273. Epub 2014 May 27. — View Citation
Fawcett A, Shembekar M, Church JS, Vashisht R, Springall RG, Nott DM. Smoking, hypertension, and colonic anastomotic healing; a combined clinical and histopathological study. Gut. 1996 May;38(5):714-8. doi: 10.1136/gut.38.5.714. — View Citation
Garski TR, Staller BJ, Hepner G, Banka VS, Finney RA Jr. Adverse reactions after administration of indocyanine green. JAMA. 1978 Aug 18;240(7):635. doi: 10.1001/jama.240.7.635b. No abstract available. — View Citation
Gossedge G, Vallance A, Jayne D. Diverse applications for near infra-red intraoperative imaging. Colorectal Dis. 2015 Oct;17 Suppl 3:7-11. doi: 10.1111/codi.13023. — View Citation
Horowitz M, Neeman E, Sharon E, Ben-Eliyahu S. Exploiting the critical perioperative period to improve long-term cancer outcomes. Nat Rev Clin Oncol. 2015 Apr;12(4):213-26. doi: 10.1038/nrclinonc.2014.224. Epub 2015 Jan 20. — View Citation
Kassis ES, Kosinski AS, Ross P Jr, Koppes KE, Donahue JM, Daniel VC. Predictors of anastomotic leak after esophagectomy: an analysis of the society of thoracic surgeons general thoracic database. Ann Thorac Surg. 2013 Dec;96(6):1919-26. doi: 10.1016/j.athoracsur.2013.07.119. Epub 2013 Sep 24. — View Citation
Kim MJ, Shin R, Oh HK, Park JW, Jeong SY, Park JG. The impact of heavy smoking on anastomotic leakage and stricture after low anterior resection in rectal cancer patients. World J Surg. 2011 Dec;35(12):2806-10. doi: 10.1007/s00268-011-1286-1. — View Citation
Kruschewski M, Rieger H, Pohlen U, Hotz HG, Buhr HJ. Risk factors for clinical anastomotic leakage and postoperative mortality in elective surgery for rectal cancer. Int J Colorectal Dis. 2007 Aug;22(8):919-27. doi: 10.1007/s00384-006-0260-0. Epub 2007 Jan 27. — View Citation
Ladak F, Dang JT, Switzer N, Mocanu V, Tian C, Birch D, Turner SR, Karmali S. Indocyanine green for the prevention of anastomotic leaks following esophagectomy: a meta-analysis. Surg Endosc. 2019 Feb;33(2):384-394. doi: 10.1007/s00464-018-6503-7. Epub 2018 Nov 1. — View Citation
Mangano A, Fernandes E, Gheza F, Bustos R, Chen LL, Masrur M, Giulianotti PC. Near-Infrared Indocyanine Green-Enhanced Fluorescence and Evaluation of the Bowel Microperfusion During Robotic Colorectal Surgery: a Retrospective Original Paper. Surg Technol Int. 2019 May 15;34:93-100. — View Citation
Mangano A, Gheza F, Chen LL, Minerva EM, Giulianotti PC. Indocyanine Green (Icg)-Enhanced Fluorescence for Intraoperative Assessment of Bowel Microperfusion During Laparoscopic and Robotic Colorectal Surgery: The Quest for Evidence-Based Results. Surg Technol Int. 2018 Jun 1;32:101-104. — View Citation
Moher D, Hopewell S, Schulz KF, Montori V, Gotzsche PC, Devereaux PJ, Elbourne D, Egger M, Altman DG. CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. BMJ. 2010 Mar 23;340:c869. doi: 10.1136/bmj.c869. No abstract available. — View Citation
Nerup N, Andersen HS, Ambrus R, Strandby RB, Svendsen MBS, Madsen MH, Svendsen LB, Achiam MP. Quantification of fluorescence angiography in a porcine model. Langenbecks Arch Surg. 2017 Jun;402(4):655-662. doi: 10.1007/s00423-016-1531-z. Epub 2016 Nov 15. — View Citation
Owens SL. Indocyanine green angiography. Br J Ophthalmol. 1996 Mar;80(3):263-6. doi: 10.1136/bjo.80.3.263. No abstract available. — View Citation
Pommergaard HC, Achiam MP, Burcharth J, Rosenberg J. Impaired blood supply in the colonic anastomosis in mice compromises healing. Int Surg. 2015 Jan;100(1):70-6. doi: 10.9738/INTSURG-D-13-00191.1. — View Citation
Simonsen C, de Heer P, Bjerre ED, Suetta C, Hojman P, Pedersen BK, Svendsen LB, Christensen JF. Sarcopenia and Postoperative Complication Risk in Gastrointestinal Surgical Oncology: A Meta-analysis. Ann Surg. 2018 Jul;268(1):58-69. doi: 10.1097/SLA.0000000000002679. — View Citation
Spinoglio G, Bertani E, Borin S, Piccioli A, Petz W. Green indocyanine fluorescence in robotic abdominal surgery. Updates Surg. 2018 Sep;70(3):375-379. doi: 10.1007/s13304-018-0585-6. Epub 2018 Aug 29. — View Citation
Sujatha-Bhaskar S, Jafari MD, Stamos MJ. The Role of Fluorescent Angiography in Anastomotic Leaks. Surg Technol Int. 2017 Jul 25;30:83-88. — View Citation
Thompson SK, Chang EY, Jobe BA. Clinical review: Healing in gastrointestinal anastomoses, part I. Microsurgery. 2006;26(3):131-6. doi: 10.1002/micr.20197. — View Citation
Trencheva K, Morrissey KP, Wells M, Mancuso CA, Lee SW, Sonoda T, Michelassi F, Charlson ME, Milsom JW. Identifying important predictors for anastomotic leak after colon and rectal resection: prospective study on 616 patients. Ann Surg. 2013 Jan;257(1):108-13. doi: 10.1097/SLA.0b013e318262a6cd. — View Citation
Watanabe J, Ishibe A, Suwa Y, Suwa H, Ota M, Kunisaki C, Endo I. Indocyanine green fluorescence imaging to reduce the risk of anastomotic leakage in laparoscopic low anterior resection for rectal cancer: a propensity score-matched cohort study. Surg Endosc. 2020 Jan;34(1):202-208. doi: 10.1007/s00464-019-06751-9. Epub 2019 Mar 14. — View Citation
Zehetner J, DeMeester SR, Alicuben ET, Oh DS, Lipham JC, Hagen JA, DeMeester TR. Intraoperative Assessment of Perfusion of the Gastric Graft and Correlation With Anastomotic Leaks After Esophagectomy. Ann Surg. 2015 Jul;262(1):74-8. doi: 10.1097/SLA.0000000000000811. — View Citation
* Note: There are 27 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Difference in gastric perfusion | The primary endpoint is the difference in gastric perfusion (obtained with q-ICG, using the slope of the fluorescence curve (as described by Nerup et al)) before and after neoadjuvant chemotherapy.
A comparison of the gastric perfusion before and after chemotherapy will be performed using Friedman's test or a repeated measures ANOVA / linear mixed-effects depending on a non- or parametric nature of the data. A P-value < 0.05 will be considered significant. Statistic evaluation will be performed using IBM SPSS Statistics © (v 22.0 SPSS Inc. Chicago, IL, USA). |
2 years | |
Secondary | Short term outcome | postoperative events and complications as graded by the Dindo-Clavien classification | 30 days after surgery | |
Secondary | Short term outcome | Postoperative events as graded by the Comprehensive Complication Index | 30 days after surgery | |
Secondary | Short term outcome | Length of hospital stay | 30 days after surgery |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05551416 -
The EpiGASTRIC/EDGAR Project: New Strategies for the Early Detection and Prevention of Gastric Cancer
|
||
Completed |
NCT05518929 -
Hypoxia During Gastroenterological Endoscope Procedures Sedated With Ciprofol In Overweight Or Obesity Patients
|
Phase 4 | |
Recruiting |
NCT06006390 -
CEA Targeting Chimeric Antigen Receptor T Lymphocytes (CAR-T) in the Treatment of CEA Positive Advanced Solid Tumors
|
Phase 1/Phase 2 | |
Recruiting |
NCT03219593 -
Apatinib as the First-Line Therapy in Elderly Locally Advanced or Metastatic Gastric Cancer
|
Phase 2 | |
Recruiting |
NCT05489211 -
Study of Dato-Dxd as Monotherapy and in Combination With Anti-cancer Agents in Patients With Advanced Solid Tumours (TROPION-PanTumor03)
|
Phase 2 | |
Recruiting |
NCT05536102 -
The Effectiveness and Safety of XELOX and Tislelizumab + PLD for Resectable Gastric Cancer (LidingStudy)
|
Phase 2 | |
Active, not recruiting |
NCT03170960 -
Study of Cabozantinib in Combination With Atezolizumab to Subjects With Locally Advanced or Metastatic Solid Tumors
|
Phase 1/Phase 2 | |
Recruiting |
NCT06010862 -
Clinical Study of CEA-targeted CAR-T Therapy for CEA-positive Advanced/Metastatic Malignant Solid Tumors
|
Phase 1 | |
Recruiting |
NCT05415098 -
Study of Safety, Pharmacokinetic and Efficacy of APG-5918 in Advanced Solid Tumors or Lymphomas
|
Phase 1 | |
Active, not recruiting |
NCT04082364 -
Combination Margetuximab, Retifanlimab, Tebotelimab, and Chemotherapy Phase 2/3 Trial in HER2+ Gastric/GEJ Cancer
|
Phase 2/Phase 3 | |
Withdrawn |
NCT03766607 -
Trastuzumab Beyond Progression in HER2 Positive Metastatic Gastric Cancer
|
Phase 2 | |
Recruiting |
NCT04118114 -
Phase II Study of PRL3-ZUMAB in Advanced Solid Tumors
|
Phase 2 | |
Completed |
NCT01924533 -
Efficacy and Safety Study of Olaparib in Combination With Paclitaxel to Treat Advanced Gastric Cancer.
|
Phase 3 | |
Terminated |
NCT01641939 -
A Study of Trastuzumab Emtansine Versus Taxane in Participants With Human Epidermal Growth Factor Receptor 2 (HER2)-Positive Advanced Gastric Cancer
|
Phase 2/Phase 3 | |
Recruiting |
NCT05107674 -
A Study of NX-1607 in Adults With Advanced Malignancies
|
Phase 1 | |
Active, not recruiting |
NCT04908813 -
Study of HLX22 in Combanition With Trastuzumab and Chemotherapy Versus Placebo in Combination With Trastuzumab and Chemotherapy for Treatment of Locally Advanced or Metastatic Gastric Cancer
|
Phase 2 | |
Active, not recruiting |
NCT04249739 -
Pembrolizumab + Capecitabine/Oxaliplatin (CapeOx) -HER2 Nagative and Pembrolizumab + Trastuzumab + Cisplatin/Capecitabine HER2 Positive
|
Phase 2 | |
Recruiting |
NCT05514158 -
To Evaluate the Safety, Tolerability, Pharmacokinetics and Preliminary Efficacy of Disitamab Vedotin Combined With RC98 in the Treatment of Subjects With HER2-expressing Locally Advanced or Metastatic Gastric Cancer (Including AEG)
|
Phase 1 | |
Recruiting |
NCT04931654 -
A Study to Assess the Safety and Efficacy of AZD7789 in Participants With Advanced or Metastatic Solid Cancer
|
Phase 1/Phase 2 | |
Recruiting |
NCT03175224 -
APL-101 Study of Subjects With NSCLC With c-Met EXON 14 Skip Mutations and c-Met Dysregulation Advanced Solid Tumors
|
Phase 2 |