Clinical Trials Logo

Clinical Trial Summary

The goal of this clinical trial is to develop and validate of a new protocol for multifactorial functional assessment of the kinematics of spinal and total body movements during walking by means of the optoelectronic motion analysis system in healthy and scoliosis subjects. The main questions it aims to answer are: - Is feasibility developing a protocol to assess the spine kinematic during walking? - Is the intra and inter operator reliability of the developed protocol acceptable? - Is the usability of the developed protocol acceptable? During data acquisition a trained therapist placed reflective markers on the skin of the participants in the selected body landmarks. The participants will be asked to perform five trial of walking barefoot on a 6 meters distance at a self-selected normal-pace speed, for each session.


Clinical Trial Description

The spine is the central supporting structure of the body and for the torso in particular, allowing for flexibility and shock absorption, as well as routing and protecting the spinal cord and supporting the head and upper limbs for sensory and motor functions. In this perspective the evaluation of its movements in a global and segmental contribution is of paramount importance and cannot be separated by the other tasks. The locomotor function was the first one targeted by human motion analysis and still represent the main application in the rehabilitation. Optoelectronic systems are the gold standard technique for this assessment and specific protocols are available and applied. Traditional stereophotogrammetric models were used to assess the kinematics of pelvis, hip, knee, ankle, trunk (considered as a single rigid segment that does not provide information on kinematic changes within the spine). Indeed, it is relevant to understand the integrated and synergic motion of the spine and other body segment for a variety of applications, such as clinical diagnosis, endoprosthesis design, and the evaluation of treatment outcomes. Therefore, an accurate trunk motion analysis may be useful during medical diagnostic-therapeutic process. The aim of this study is introducing a new protocol consisting of a marker set, i.e. an innovative and integrated biomechanical model of the human body for the global analysis of spine and body movement during gait allows for a more detailed evaluation of the motor behavior and its abnormalities to better characterize the functionality of the spine at the level of its three main segments (upper thoracic, lower thoracic and lumbar), both on the sagittal, frontal and transversal plane, during walking. The development of a new protocol of analysis requires the validation before its definitive and clinical application. More in detail, the validation should be carried out in terms of both comparisons with reference absolute measures and the evaluation of its repeatability with healthy subjects. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT06400680
Study type Interventional
Source IRCCS Eugenio Medea
Contact Giuseppe Andreoni
Phone 031877350
Email giuseppe.andreoni@lanostrafamiglia.it
Status Recruiting
Phase N/A
Start date May 18, 2023
Completion date May 18, 2026

See also
  Status Clinical Trial Phase
Terminated NCT01208142 - Toe Walker Gait Trial N/A
Completed NCT00934531 - Donepezil and the Risk of Falls in Seniors With Cognitive Impairment N/A
Active, not recruiting NCT03892291 - Objective Dual-task Turning Measures for Return-to-duty Assessments
Terminated NCT04591288 - FES to Improve Gait in CP N/A
Completed NCT02085954 - Evaluation of a Training in the Walking With Exosquelette N/A
Completed NCT05358288 - Effect of Bariatric Surgery on Physical Activity, Gait, Flexibility and Quality of Life
Completed NCT04614857 - Correlation Between Cardiopulmonary Metabolic Cost and Lower Limb Muscle Activity N/A
Recruiting NCT05196178 - Spinal Cord Stimulation Therapy for Hereditary Spastic Paraplegias Patients N/A
Completed NCT06227312 - Effect of Whole-body Vibration on the Ankle Joint, Plantar Pressure, and Running Paramethers N/A
Recruiting NCT03801785 - Efficacy of Non-Nutritive Sucking (NNS) on Balance and Gait Measured in 12-42 Month-Old Healthy Children Over 36 Months N/A
Recruiting NCT05277181 - Wearable Technology as an Objective Tool for Measuring Running Gait
Completed NCT05929118 - The Effect of Aquatic Rehabilitation on Knee Function in Anterior Cruciate Ligament Reconstruction Patients. N/A
Recruiting NCT06345625 - Gait and Postural Balance Analysis During Head-motion Perturbed Standing and Walking in Older Adults
Not yet recruiting NCT06289231 - The Use of Artificial Intelligence (AI) for Gait Analysis
Not yet recruiting NCT06387459 - Feasibility of Fabric Orthosis for Knee Support in Elderly Gait Improvement N/A
Active, not recruiting NCT05404126 - Balance and Gait in Hearing Impaired Children N/A
Completed NCT05462977 - Rhythmically Entrained Exercise in Community-Dwelling Older Adults N/A
Completed NCT03636971 - Gait Analysis Following Knee Viscosupplementation Phase 2/Phase 3
Not yet recruiting NCT05786690 - The Effect of Microprocessor Controlled Prostheses on Walking Pattern and Energy Consumption
Completed NCT01076413 - Comparison of Two Exercise Interventions to Improve Gait in Older Persons N/A