Clinical Trials Logo

Clinical Trial Summary

Despite the clear importance of adolescence in the emergence of a number of disease states and processes, there is surprisingly little known about how the endocrine and metabolic events accompanying puberty in humans impact normal developmental neurobiology. Epidemiologic studies have identified sexual dimorphisms in the prevalence of several neuropsychiatric disorders, including depression, schizophrenia, and substance abuse. Many of these sex differences emerge during or shortly after puberty and are maintained until the 5th-6th decade of life. For example, the two-fold greater risk of unipolar depression in women compared with men does not appear until adolescence, and prior to puberty girls are not at increased risk relative to boys. Puberty is a structured, transitional process that can be influenced by both nutritional factors and environmental stressors; nonetheless, the variability in the timing and duration of puberty is largely determined by oligogenic inheritance. Basic neuroscience research has demonstrated that hormonal events accompanying puberty impact on many of the physiologic systems involved in the regulation of brain function (e.g., the appearance of new neurons in a brain-region specific pattern, neuronal remodeling, and the pruning of cortical connectivity). Additionally, not only does stress during puberty increase the risk of disturbances in affective adaptation during adulthood, but the events accompanying puberty modify stress responsivity (e.g., alterations in the duration and peak response of hypothalamic-pituitary-adrenal [HPA] axis hormones to stressors). Moreover, animal work has demonstrated that neural connectivity differs in a brain regional specific manner according to the stage of puberty (i.e., early versus late). In humans, puberty also occurs in stages, and although the endocrinology of puberty, surprisingly, has not been fully characterized with longitudinal data, studies have documented that the physical changes measured by Tanner stages I to V are accompanied by progressive increases in the secretions of both gonadal and adrenal steroids. Nonetheless, there remains considerable variability in the timing and duration of this otherwise highly structured reproductive transition. We propose to perform a longitudinal, naturalistic study examining changes in brain structure and function, behavior, and stress responsivity in boys and girls across the pubertal transition. Because the pubertal transition is defined by a complex series of physiologic events that emerge sequentially over several years and involve changes in multiple endocrine and growth systems, and because there is also considerable variability in the timing of these events reflecting the influence of both genetic and environmental factors, puberty cannot by delineated by age of the participants as has been done in most imaging and other neurobiological studies of adolescence. The present study will formally bridge this gap by defining pubertal events per se in participants. Participants will include healthy boys and girls whose pubertal status will be assessed, and in whom endocrine, metabolic, and brain imaging measures will be evaluated at eight - ten month intervals from age eight years (pre-puberty) until age 17 years (post-puberty). Reproductive endocrine, metabolic, and physical measures will be employed to characterize the stage and duration of pubertal development. Outcome measures will be derived via multimodal neuroimaging techniques, cognitive/behavioral assessments, metabolic measurements, and evaluations of HPA axis function. Additionally, the impact of genetic variation on the developmental trajectory of these parameters (both reproductive and CNS) will be determined. This cross-institute proposal will employ a multidisciplinary approach to evaluating the effects on CNS function of the process of puberty in both boys and girls. This work will not only serve to inform research on the mechanisms by which sexual dimorphisms in neuropsychiatric disorders develop, it will also have important implications for the prevention and treatment of these disorders.


Clinical Trial Description

Despite the clear importance of adolescence in the emergence of a number of disease states and processes, there is surprisingly little known about how the endocrine and metabolic events accompanying puberty in humans impact normal developmental neurobiology. Epidemiologic studies have identified sexual dimorphisms in the prevalence of several neuropsychiatric disorders, including depression, schizophrenia, and substance abuse. Many of these sex differences emerge during or shortly after puberty and are maintained until the 5th-6th decade of life. For example, the two-fold greater risk of unipolar depression in women compared with men does not appear until adolescence, and prior to puberty girls are not at increased risk relative to boys. Puberty is a structured, transitional process that can be influenced by both nutritional factors and environmental stressors; nonetheless, the variability in the timing and duration of puberty is largely determined by oligogenic inheritance. Basic neuroscience research has demonstrated that hormonal events accompanying puberty impact on many of the physiologic systems involved in the regulation of brain function (e.g., the appearance of new neurons in a brain-region specific pattern, neuronal remodeling, and the pruning of cortical connectivity). Additionally, not only does stress during puberty increase the risk of disturbances in affective adaptation during adulthood, but the events accompanying puberty modify stress responsivity (e.g., alterations in the duration and peak response of hypothalamic-pituitary-adrenal [HPA] axis hormones to stressors). Moreover, animal work has demonstrated that neural connectivity differs in a brain regional specific manner according to the stage of puberty (i.e., early versus late). In humans, puberty also occurs in stages, and although the endocrinology of puberty, surprisingly, has not been fully characterized with longitudinal data, studies have documented that the physical changes measured by Tanner stages I to V are accompanied by progressive increases in the secretions of both gonadal and adrenal steroids. Nonetheless, there remains considerable variability in the timing and duration of this otherwise highly structured reproductive transition. We propose to perform a longitudinal, naturalistic study examining changes in brain structure and function, behavior, and stress responsivity in boys and girls across the pubertal transition. Because the pubertal transition is defined by a complex series of physiologic events that emerge sequentially over several years and involve changes in multiple endocrine and growth systems, and because there is also considerable variability in the timing of these events reflecting the influence of both genetic and environmental factors, puberty cannot by delineated by age of the participants as has been done in most imaging and other neurobiological studies of adolescence. The present study will formally bridge this gap by defining pubertal events per se in participants. Participants will include healthy boys and girls whose pubertal status will be assessed, and in whom endocrine, metabolic, and brain imaging measures will be evaluated at eight - ten month intervals from age eight years (pre-puberty) until age 17 years (post-puberty). We will screen children in the clinic at age seven however will delay their first regular study visit until they are eight years old. Reproductive endocrine, metabolic, and physical measures will be employed to characterize the stage and duration of pubertal development. Outcome measures will be derived via multimodal neuroimaging techniques, cognitive/behavioral assessments, metabolic measurements, and evaluations of HPA axis function. Additionally, the impact of genetic variation on the developmental trajectory of these parameters (both reproductive and CNS) will be determined. This cross-institute proposal will employ a multidisciplinary approach to evaluating the effects on CNS function of the process of puberty in both boys and girls. This work will not only serve to inform research on the mechanisms by which sexual dimorphisms in neuropsychiatric disorders develop, it will also have important implications for the prevention and treatment of these disorders. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT01434368
Study type Observational
Source National Institutes of Health Clinical Center (CC)
Contact Peter J Schmidt, M.D.
Phone (301) 496-6120
Email peterschmidt@mail.nih.gov
Status Recruiting
Phase
Start date November 23, 2011

See also
  Status Clinical Trial Phase
Active, not recruiting NCT03338634 - Pilot Testing of Food Images in Children
Recruiting NCT05645835 - Dynamic Neural Systems Underlying Social-emotional Functions in Older Adults N/A
Recruiting NCT06221722 - Predicting Treatment Outcomes in Refractory Constipation Through Brain Connectivity Evaluation
Recruiting NCT04810234 - Neural Correlates of tVNS
Completed NCT01037608 - Effects of Sativex(Registered Trademark) and Oral THC on Attention, Affect, Working Memory, Reversal Learning, Physiology and Brain Activation Phase 1
Recruiting NCT06403852 - Investigating Near-Threshold Perception During Anesthetic Sedation Phase 2
Completed NCT04065061 - Erinacine A-enriched Hericium Erinaceus Mycelia for Improvement of Recognition, Vision, and Functional MRI Alterations N/A
Completed NCT00001284 - Magnetic Resonance Imaging (MRI) of Neuropsychiatric Patients and Healthy Volunteers
Recruiting NCT01617408 - Brain Stimulation and Vision Testing
Terminated NCT02089776 - fMRI Neurofeedback for Motor Rehabilitation
Completed NCT02119624 - Neural Substrates of Approach-Avoidance Conflict
Recruiting NCT01087281 - Top-Down Attentional Control of Visual-Processing
Recruiting NCT04075890 - Arbitration Between Habitual and Goal-directed Behavior in Obsessive-compulsive Disorder: Circuit Dynamics and Effects of Noninvasive Neurostimulation N/A
Recruiting NCT00004577 - Study of New Magnetic Resonance Imaging Methods of the Brain
Completed NCT03341247 - Brain Mechanisms of Overeating in Children
Completed NCT04726176 - COVID-19 and the Brain
Recruiting NCT05441865 - Cardiovascular Risk Factors and Cognitive Trajectories
Terminated NCT01260740 - The Effect of Transcranial Magnetic Stimulation on Learning With Reward in Healthy Humans N/A
Completed NCT01779024 - Ghrelin for Alcohol Use in Non-Treatment-Seeking Heavy Drinkers Phase 2
Completed NCT01175993 - Effects of Rapid-Resisted Exercise and Bright Light Therapy on Ambulatory Adults With Traumatic Brain Injury Phase 1/Phase 2