Clinical Trials Logo

Clinical Trial Details — Status: Not yet recruiting

Administrative data

NCT number NCT06006130
Other study ID # 16482
Secondary ID
Status Not yet recruiting
Phase N/A
First received
Last updated
Start date November 1, 2023
Est. completion date May 30, 2025

Study information

Verified date October 2023
Source McMaster University
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

Fibromyalgia is a syndrome associated with fatigue and chronic pain, leading to significant physical limitations and impaired quality of life. There are several challenges that complicate the diagnosis and management of fibromyalgia. The etiology is not well defined, as there are several proposed factors that may trigger the genesis of pain in fibromyalgia including physical and/or emotional life stressors, and genetic predispositions involving neuromodulator pathways. Chronic pain in fibromyalgia arises in the absence of tissue pathology, and consequently a lack of consensus on reliable diagnostic criteria. Understanding the neurophysiology of fibromyalgia would aid in the discovery of objective biomarkers for diagnosis. Therefore, the goals of this study are to: 1. Compare the neurophysiological responses in fibromyalgia compared to healthy controls. 2. Determine whether a two-week rTMS protocol will alter pain in individuals with fibromyalgia.


Description:

Fibromyalgia is a syndrome associated with fatigue and chronic pain, leading to significant physical limitations and impaired quality of life. Fibromyalgia affects 1.7% of Canadians, with a higher prevalence in females compared to males at 9:1 [1]. There are several challenges that complicate the diagnosis and management of fibromyalgia. The etiology is not well defined, as there are several proposed factors that may trigger the genesis of pain in fibromyalgia. Chronic pain in fibromyalgia arises in the absence of tissue pathology, and consequently a lack of consensus on reliable diagnostic criteria. Understanding the pathophysiology of fibromyalgia would aid in the identification of objective biomarkers that could be used for diagnosis. Multiple theories have been posited to explain the genesis of chronic pain. The gate control theory describes the attenuation of pain signals in the spinal cord prior to cortical processing, and it has been hypothesized that loss of this gate control leads to the genesis of chronic pain [2]. Gate control can be observed by reduction of afferent signals during active muscle contraction. For example, the amplitude of the somatosensory-evoked potential (SEP) is attenuated during active contraction [3]. To our knowledge, it is unknown whether such gate control is observed in fibromyalgia. The lack of gate control may contribute to chronic pain in this population. The sensorimotor theory suggests that incongruency between motor intention and sensory feedback underlies chronic pain where there is an absence of tissue pathology [4]. This may align with the genesis of fibromyalgia, given the findings that those with fibromyalgia have altered tactile and proprioceptive functioning [5]. Corticomuscular coherence (CMC) is a useful tool that uses electroencephalography (EEG) and electromyography (EMG) to probe the synchrony of neural firing between the brain and muscle [6]. To our knowledge, it is unknown how the magnitude of CMC varies in fibromyalgia compared to healthy controls. Non-invasive brain stimulation in the form of Transcranial Magnetic Stimulation (TMS) has been used to probe the activity of corticospinal and cortical networks in fibromyalgia. When TMS pulses are delivered in a repetitive train, a protocol known as repetitive TMS (rTMS), short-term neuroplasticity can be induced (i.e., a change in the activity of neurons in the brain). In fibromyalgia, Mhalla et al. [7] found that 5 days of 10 Hz rTMS reduced pain intensity and improved quality of life metrics. It is unknown whether a longer intervention period could lead to greater analgesic effects. Finally, central sensitization may explain the widespread chronic pain experienced in fibromyalgia. There are several neuromodulators that contribute to the neurobiology of central sensitization and may be implicated in this condition including serotonin, dopamine, and brain-derived neurotrophic factor (BDNF). Serotonin is linked to pain modulation, such that increased levels of 5-HT are associated with hyperalgesia [8]. BDNF has been implicated in the genesis of neuropathic pain [9]. In fibromyalgia compared to healthy controls, serum BDNF levels have been reported to be higher [10]. Abnormal dopamine function may also be associated with fibromyalgia [11]. Positron-emission tomography (PET) studies show lower cortical dopamine D2/D3 binding availability in fibromyalgia compared to healthy controls [12]. Ultimately, a combination of events may lead to widespread chronic pain in fibromyalgia. Understanding the neurophysiology of fibromyalgia would aid in the discovery of objective biomarkers for diagnosis. Therefore, the goals of this study are to: 1. Compare the neurophysiological responses in fibromyalgia compared to healthy controls. 2. Determine whether a two-week rTMS protocol will alter pain in individuals with fibromyalgia. 1. M. B. Yunus, "The role of gender in fibromyalgia syndrome," Curr Rheumatol Rep, vol. 3, no. 2, pp. 128-134, 2001, doi: 10.1007/S11926-001-0008-3. 2. R. Melzack, "Evolution of the neuromatrix theory of pain. The Prithvi Raj Lecture: presented at the third World Congress of World Institute of Pain, Barcelona 2004," Pain Pract, vol. 5, no. 2, pp. 85-94, Jun. 2005, doi: 10.1111/J.1533-2500.2005.05203.X. 3. H. Nakata, K. Inui, T. Wasaka, Y. Nishihira, and R. Kakigi, "Mechanisms of differences in gating effects on short-and long-latency somatosensory evoked potentials relating to movement," Brain Topogr, vol. 15, no. 4, pp. 211-222, Jun. 2003, doi: 10.1023/A:1023908707851. 4. A. D. Vittersø, M. Halicka, G. Buckingham, M. J. Proulx, and J. H. Bultitude, "The sensorimotor theory of pathological pain revisited," Neurosci Biobehav Rev, vol. 139, Aug. 2022, doi: 10.1016/J.NEUBIOREV.2022.104735. 5. S. Toprak Celenay, O. Mete, O. Coban, D. Oskay, and S. Erten, "Trunk position sense, postural stability, and spine posture in fibromyalgia," Rheumatol Int, vol. 39, no. 12, pp. 2087-2094, Dec. 2019, doi: 10.1007/S00296-019-04399-1/TABLES/2. 6. A. Chowdhury, H. Raza, Y. K. Meena, A. Dutta, and G. Prasad, "An EEG-EMG correlation-based brain-computer interface for hand orthosis supported neuro-rehabilitation," J Neurosci Methods, vol. 312, pp. 1-11, Jan. 2019, doi: 10.1016/J.JNEUMETH.2018.11.010. 7. A. Mhalla et al., "Long-term maintenance of the analgesic effects of transcranial magnetic stimulation in fibromyalgia," Pain, vol. 152, no. 7, pp. 1478-1485, 2011, doi: 10.1016/J.PAIN.2011.01.034. 8. E. A. Ovrom, K. A. ; Mostert, S. ; Khakhkhar, D. P. ; Mckee, P. ; Yang, and Y. F. A. Her, "A Comprehensive Review of the Genetic and Epigenetic Contributions to the Development of Fibromyalgia," Biomedicines 2023, Vol. 11, Page 1119, vol. 11, no. 4, p. 1119, Apr. 2023, doi: 10.3390/BIOMEDICINES11041119. 9. K. Obata and K. Noguchi, "BDNF in sensory neurons and chronic pain," Neurosci Res, vol. 55, no. 1, pp. 1-10, May 2006, doi: 10.1016/J.NEURES.2006.01.005. 10. A. Deitos et al., "Clinical Value of Serum Neuroplasticity Mediators in Identifying the Central Sensitivity Syndrome in Patients With Chronic Pain With and Without Structural Pathology," Clin J Pain, vol. 31, no. 11, pp. 959-967, 2015, doi: 10.1097/AJP.0000000000000194. 11. P. B. Wood, M. F. Glabus, R. Simpson, and J. C. Patterson, "Changes in gray matter density in fibromyalgia: correlation with dopamine metabolism," J Pain, vol. 10, no. 6, pp. 609-618, Jun. 2009, doi: 10.1016/J.JPAIN.2008.12.008. 12. D. S. Albrecht et al., "Differential dopamine function in fibromyalgia," Brain Imaging Behav, vol. 10, no. 3, pp. 829-839, Sep. 2016, doi: 10.1007/S11682-015-9459-4/FIGURES/4.


Recruitment information / eligibility

Status Not yet recruiting
Enrollment 60
Est. completion date May 30, 2025
Est. primary completion date May 30, 2025
Accepts healthy volunteers Accepts Healthy Volunteers
Gender All
Age group 20 Years to 65 Years
Eligibility Inclusion Criteria: - 18-65 years old Exclusion Criteria: - contraindications to TMS - chronic pain associated with diagnoses other than fibromyalgia

Study Design


Related Conditions & MeSH terms


Intervention

Device:
Active Repetitive Transcranial Magnetic Stimulation (rTMS)
rTMS is a non-invasive, non-painful procedure used to relieve chronic pain and promote short-term changes. The abductor pollicis brevis (APB) muscle of the left motor cortex will be targeted using neuronavigation software. 1500 pulses will be delivered at 10 Hz stimulation. Stimulation will be delivered at 80% of the resting motor threshold obtained from the right APB muscle. The delivery of rTMS requires 11 minutes in total.
Sham Repetitive Transcranial Magnetic Stimulation (rTMS)
A sham coil will be utilized for the sham rTMS condition. It is important to note that from the participant perspective, the sham stimulation will feel and sound identical to active. The location and all other parameters of Sham rTMS will be identical to Active rTMS.

Locations

Country Name City State
Canada McMaster University Hamilton Ontario

Sponsors (1)

Lead Sponsor Collaborator
McMaster University

Country where clinical trial is conducted

Canada, 

Outcome

Type Measure Description Time frame Safety issue
Primary Change in PROMIS-29 v2.0 Profile Using numerical rating (0 to 5) to assess the change in seven health domains including physical function, anxiety, depression, fatigue, sleep disturbances, ability to participate in social roles and activities, and pain interference. Each category consists of 4 questions. Also uses a numerical rating to asses pain intensity (0-10). Experiment 1: At baseline pre-intervention, Experiment 2: At baseline pre-intervention and 2 weeks post-intervention
Primary Change in Fibromyalgia impact questionnaire (FIQ) This instrument will be used to assess the patients feeling and emotion related to their pain experience. Experiment 1: At baseline pre-intervention, Experiment 2: At baseline pre-intervention and 2 weeks post-intervention
Secondary Change in Pain catastrophizing scale-EN-SF Will be used to assess the patients feeling and emotion related to their pain experience Experiment 1: At baseline pre-intervention, Experiment 2: At baseline pre-intervention and 2 weeks post-intervention
Secondary Change in Patient Health Questionnaire-4 (PHQ-4) Will be used to assess for symptoms of for Major Depressive Disorder and Generalized Anxiety Disorder Experiment 1: At baseline pre-intervention, Experiment 2: At baseline pre-intervention and 2 weeks post-intervention
Secondary Change in Short-form Posttraumatic Checklist-5 (Short-form PCL-5) Will be used to screen for symptoms of Posttraumatic Stress Disorder (PTSD) Experiment 1: At baseline pre-intervention, Experiment 2: At baseline pre-intervention and 2 weeks post-intervention
Secondary Change in Motor-evoked potentials (MEPs) This will include an assessments of MEPs obtained using Transcranial Magnetic Stimulation (TMS). Experiment 1: At baseline pre-intervention and immediately following 1 treatment session, Experiment 2: At baseline pre-intervention and 2 weeks post-intervention
Secondary Change in Short-Interval Intracortical Inhibition (SICI) This will include an assessments of SICI obtained using Transcranial Magnetic Stimulation (TMS). Experiment 1: At baseline pre-intervention and immediately following 1 treatment session, Experiment 2: At baseline pre-intervention and 2 weeks post-intervention
Secondary Change in performance on sensorimotor tasks Tasks include tactile localization, temporal order judgement (TOJ), and sequential amplitude discrimination Experiment 1: At baseline pre-intervention, Experiment 2: At baseline pre-intervention and 2 weeks post-intervention
Secondary EEG assessment of Somatosensory-evoked potentials (SEPs) This will include an assessment of SEPs using EEG electrodes. Experiment 1: At baseline pre-intervention only
Secondary EEG assessment of Pain-related evoked potentials (PREPs) This will include an assessment of PREPs using EEG electrodes. Experiment 1: At baseline pre-intervention only
Secondary EEG assessment of Corticomuscular coherence (CMC) This will include an assessment of CMC using EEG electrodes. Experiment 1: At baseline pre-intervention only
Secondary EEG assessment of Event-related desynchronization (ERD) This will include an assessment of ERD using EEG electrodes. Experiment 1: At baseline pre-intervention only
See also
  Status Clinical Trial Phase
Active, not recruiting NCT05659862 - Digitally Assisted Behavioral Physical Activity Intervention in Fibromyalgia N/A
Recruiting NCT03207828 - Testing Interventions for Patients With Fibromyalgia and Depression N/A
Completed NCT03042728 - Impact of Inclusion of a Therapy Dog Visit as Part of the Fibromyalgia Treatment Program N/A
Recruiting NCT06097091 - Effects and Mechanisms of Pain Neuroscience Education in Patients With Fibromyalgia N/A
Recruiting NCT04554784 - Effectiveness of Bowen Therapy for Pain Management in Patients With Fibromyalgia N/A
Completed NCT03300635 - Metabolism, Muscle Function and Psychological Factors in Fibromyalgia N/A
Recruiting NCT06166563 - Exercise, Irritable Bowel Syndrome and Fibromyalgia N/A
Completed NCT03166995 - Postural Exercises in Women With Fibromyalgia N/A
Completed NCT03227952 - Sensory Stimulation in Fibromyalgia N/A
Recruiting NCT06237595 - Vagus Nerve Stimulation in Fibromyalgia N/A
Completed NCT01888640 - Fibromyalgia Activity Study With Transcutaneous Electrical Nerve Stimulation (FAST) N/A
Completed NCT03641495 - Pain Education and Therapeutic Exercise for Fibromyalgia N/A
Recruiting NCT05581628 - FREQUENCY OF FIBROMYALGIA IN PATIENTS WITH CELIAC DISEASE
Active, not recruiting NCT05128162 - Open-label Study to Assess the Safety and Efficacy of Psilocybin With Psychotherapy in Adult Participants With Fibromyalgia Phase 2
Completed NCT04674878 - Comparison of Muscle Energy Techniques and Breathing Exercises for Functional Improvement in Fibromyalgia N/A
Active, not recruiting NCT04084795 - Augmentation of EMDR With tDCS in the Treatment of Fibromyalgia N/A
Completed NCT03129906 - Impact of the Restriction of Sources of Gluten in Fibromyalgia Patients N/A
Completed NCT05058911 - Exposure-based Cognitive Behavior Therapy vs Traditional Cognitive Behavior Therapy for Fibromyalgia N/A
Recruiting NCT04571528 - Effectiveness of VIRTUAL FIBROWALK STUDY N/A
Recruiting NCT04571853 - New Educational Tool for FM N/A