Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT01588041
Other study ID # Pro00016827
Secondary ID R01EY023039
Status Completed
Phase
First received
Last updated
Start date September 2009
Est. completion date August 8, 2018

Study information

Verified date April 2023
Source Duke University
Contact n/a
Is FDA regulated No
Health authority
Study type Observational

Clinical Trial Summary

The purpose of this study is to investigate the use of optical coherence tomography imaging integrated with an operating microscope (MIOCT) in ophthalmic surgeries.


Description:

Optical Coherence Tomography (OCT) is used to capture reproducible ocular morphology and cross-sectional tissue measurements in-vivo in a rapid, non-invasive, non-contact manner. It has displaced ophthalmoscopy and stereo photography for clinical assessment and documentation of retinal microanatomy including thickness, cystoid structures, subretinal fluid and retinal traction.(1) Spectral Domain Optical Coherence Tomography (SDOCT) has the speed and resolution required for real-time noninvasive three-dimensional imaging of critical pathology. While modern ophthalmic surgery has benefited from rapid advances in instrumentation and techniques (2-6), the basic principles of the stereo zoom operating microscope have not changed (except for increased automation) since the 1930's. (7-9) The ability to better resolve tissue microanatomy through real-time micro-imaging would have a dramatic impact on ophthalmic surgeon's capabilities, foster the development of new surgical techniques, and potentially improve surgical outcomes. Complementary to microscope integrated OCT (MIOCT) testing, we use a commercial hand-held SDOCT instrument (Bioptigen, Inc.) during pauses in both anterior segment and retinal surgery to document surgical process. While both the handheld instrument and Duke's Generation 1 (G1) MIOCT prototype have demonstrated that high-quality OCT imaging is possible during surgery, in both cases control of the OCT scan location and display of the real-time image data are managed on the OCT system console, located up to several feet from the surgeon. Thus, the potential dramatic impact of this technology on ophthalmic surgery is constrained by its limited integration with the surgical environment. The primary technical goal of this project is to address this issue through novel advances in OCT technology, automated tracking of surgical instruments and tools, and fusion of OCT controls, images and measurements into a seamless interface for the surgeon. This study will facilitate future quality improvement processes based on intraoperative data matched to postoperative outcomes. Intraoperative OCT feedback will revolutionize communication in surgical research, clinical communication, surgeon training and continuing education, and will provide measurable data regarding disease patterns and intraoperative response, novel instrument and adjuvant use. This study will prospectively examine the surgical utility of MIOCT in retinal and anterior segment surgery. A total of 722 subjects will be enrolled at 2 sites, Duke Eye Center and Cole Eye Institute. Of those, there will be 500 retina subjects and 222 anterior segment subjects. There will be a small number of normal subjects, who are not undergoing eye surgery, enrolled in this portion of this study for non-surgical study of the MIOCT system imaging, particularly for Generation 2 (G2) MIOCT. Rate of recruitment: 460 retina subjects will be enrolled at the rate of approximately 115 per year (~57 per year at both Duke and Cole) for years 1-4 and approximately 40 subjects will be enrolled in year 5 (adding up to a total of 500 subjects).


Recruitment information / eligibility

Status Completed
Enrollment 269
Est. completion date August 8, 2018
Est. primary completion date August 8, 2018
Accepts healthy volunteers Accepts Healthy Volunteers
Gender All
Age group 0 Years and older
Eligibility Inclusion criteria 1. subjects undergoing surgery for vitreoretinal interface disease 2. subjects undergoing surgery for macular hole 3. subjects undergoing surgery for retinal detachment 4. subjects undergoing surgery for diabetic retinopathy with macular edema and/or traction detachments 5. subjects undergoing surgery for epiretinal membranes 6. subjects undergoing surgery for rare related macular diseases like myopic schisis. 7. subjects undergoing endothelial keratoplasty or anterior lamellar keratoplasty 8. subjects with normal ocular pathology enrolled as controls Exclusion criteria: 1. Any ocular disease that restricts the ability to perform MIOCT scanning.

Study Design


Related Conditions & MeSH terms


Locations

Country Name City State
United States Cole Eye Institute at the Cleveland Clinic Lemer College of Medicine Cleveland Ohio
United States Duke University Eye Center Durham North Carolina

Sponsors (2)

Lead Sponsor Collaborator
Duke University National Eye Institute (NEI)

Country where clinical trial is conducted

United States, 

References & Publications (39)

Bhullar PK, Carrasco-Zevallos OM, Dandridge A, Pasricha ND, Keller B, Shen L, Izatt JA, Toth CA, Kuo AN. Intraocular Pressure and Big Bubble Diameter in Deep Anterior Lamellar Keratoplasty: An Ex-Vivo Microscope-Integrated OCT With Heads-Up Display Study. Asia Pac J Ophthalmol (Phila). 2017 Sep-Oct;6(5):412-417. doi: 10.22608/APO.2017265. — View Citation

Bleicher ID, Jackson-Atogi M, Viehland C, Gabr H, Izatt JA, Toth CA. Depth-Based, Motion-Stabilized Colorization of Microscope-Integrated Optical Coherence Tomography Volumes for Microscope-Independent Microsurgery. Transl Vis Sci Technol. 2018 Nov 1;7(6):1. doi: 10.1167/tvst.7.6.1. eCollection 2018 Nov. — View Citation

Carrasco-Zevallos OM, Keller B, Viehland C, Shen L, Seider MI, Izatt JA, Toth CA. Optical Coherence Tomography for Retinal Surgery: Perioperative Analysis to Real-Time Four-Dimensional Image-Guided Surgery. Invest Ophthalmol Vis Sci. 2016 Jul 1;57(9):OCT37-50. doi: 10.1167/iovs.16-19277. — View Citation

Carrasco-Zevallos OM, Keller B, Viehland C, Shen L, Waterman G, Todorich B, Shieh C, Hahn P, Farsiu S, Kuo AN, Toth CA, Izatt JA. Live volumetric (4D) visualization and guidance of in vivo human ophthalmic surgery with intraoperative optical coherence tomography. Sci Rep. 2016 Aug 19;6:31689. doi: 10.1038/srep31689. — View Citation

Carrasco-Zevallos OM, Viehland C, Keller B, Draelos M, Kuo AN, Toth CA, Izatt JA. Review of intraoperative optical coherence tomography: technology and applications [Invited]. Biomed Opt Express. 2017 Feb 21;8(3):1607-1637. doi: 10.1364/BOE.8.001607. eCollection 2017 Mar 1. — View Citation

Chen X, Viehland C, Carrasco-Zevallos OM, Keller B, Vajzovic L, Izatt JA, Toth CA. Microscope-Integrated Optical Coherence Tomography Angiography in the Operating Room in Young Children With Retinal Vascular Disease. JAMA Ophthalmol. 2017 May 1;135(5):483-486. doi: 10.1001/jamaophthalmol.2017.0422. — View Citation

Ehlers JP, Gupta PK, Farsiu S, Maldonado R, Kim T, Toth CA, Mruthyunjaya P. Evaluation of contrast agents for enhanced visualization in optical coherence tomography. Invest Ophthalmol Vis Sci. 2010 Dec;51(12):6614-9. doi: 10.1167/iovs.10-6195. Epub 2010 Nov 4. — View Citation

Ehlers JP, Kernstine K, Farsiu S, Sarin N, Maldonado R, Toth CA. Analysis of pars plana vitrectomy for optic pit-related maculopathy with intraoperative optical coherence tomography: a possible connection with the vitreous cavity. Arch Ophthalmol. 2011 Nov;129(11):1483-6. doi: 10.1001/archophthalmol.2011.316. — View Citation

Ehlers JP, Tao YK, Farsiu S, Maldonado R, Izatt JA, Toth CA. Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging. Invest Ophthalmol Vis Sci. 2011 May 16;52(6):3153-9. doi: 10.1167/iovs.10-6720. — View Citation

Ehlers JP, Tao YK, Farsiu S, Maldonado R, Izatt JA, Toth CA. Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system. Retina. 2013 Jan;33(1):232-6. doi: 10.1097/IAE.0b013e31826e86f5. No abstract available. — View Citation

Folgar FA, Yuan EL, Farsiu S, Toth CA. Lateral and axial measurement differences between spectral-domain optical coherence tomography systems. J Biomed Opt. 2014 Jan;19(1):16014. doi: 10.1117/1.JBO.19.1.016014. Erratum In: J Biomed Opt. 2015 May;20(5):59802. — View Citation

Gabr H, Chen X, Zevallos-Carrasco OM, Viehland C, Dandrige A, Sarin N, Mahmoud TH, Vajzovic L, Izatt JA, Toth CA. VISUALIZATION FROM INTRAOPERATIVE SWEPT-SOURCE MICROSCOPE-INTEGRATED OPTICAL COHERENCE TOMOGRAPHY IN VITRECTOMY FOR COMPLICATIONS OF PROLIFERATIVE DIABETIC RETINOPATHY. Retina. 2018 Sep;38 Suppl 1(Suppl 1):S110-S120. doi: 10.1097/IAE.0000000000002021. — View Citation

Grewal DS, Bhullar PK, Pasricha ND, Carrasco-Zevallos OM, Viehland C, Keller B, Shen L, Izatt JA, Kuo AN, Toth CA, Mruthyunjaya P. Intraoperative 4-Dimensional Microscope-Integrated Optical Coherence Tomography-Guided 27-Gauge Transvitreal Choroidal Biopsy for Choroidal Melanoma. Retina. 2017 Apr;37(4):796-799. doi: 10.1097/IAE.0000000000001326. — View Citation

Grewal DS, Carrasco-Zevallos OM, Gunther R, Izatt JA, Toth CA, Hahn P. Intra-operative microscope-integrated swept-source optical coherence tomography guided placement of Argus II retinal prosthesis. Acta Ophthalmol. 2017 Aug;95(5):e431-e432. doi: 10.1111/aos.13123. Epub 2016 Jun 20. No abstract available. — View Citation

Hahn P, Carrasco-Zevallos O, Cunefare D, Migacz J, Farsiu S, Izatt JA, Toth CA. Intrasurgical Human Retinal Imaging With Manual Instrument Tracking Using a Microscope-Integrated Spectral-Domain Optical Coherence Tomography Device. Transl Vis Sci Technol. 2015 Jul 1;4(4):1. doi: 10.1167/tvst.4.4.1. eCollection 2015 Jul. — View Citation

Hahn P, Migacz J, O'Connell R, Izatt JA, Toth CA. Unprocessed real-time imaging of vitreoretinal surgical maneuvers using a microscope-integrated spectral-domain optical coherence tomography system. Graefes Arch Clin Exp Ophthalmol. 2013 Jan;251(1):213-20. doi: 10.1007/s00417-012-2052-2. Epub 2012 May 16. — View Citation

Hahn P, Migacz J, O'Connell R, Maldonado RS, Izatt JA, Toth CA. The use of optical coherence tomography in intraoperative ophthalmic imaging. Ophthalmic Surg Lasers Imaging. 2011 Jul;42 Suppl(0):S85-94. doi: 10.3928/15428877-20110627-08. — View Citation

Hahn P, Migacz J, O'Donnell R, Day S, Lee A, Lin P, Vann R, Kuo A, Fekrat S, Mruthyunjaya P, Postel EA, Izatt JA, Toth CA. Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device. Retina. 2013 Jul-Aug;33(7):1328-37. doi: 10.1097/IAE.0b013e3182831293. — View Citation

Hsu ST, Gabr H, Viehland C, Sleiman K, Ngo HT, Carrasco-Zevallos OM, Vajzovic L, McNabb RP, Stinnett SS, Izatt JA, Kuo AN, Toth CA. Volumetric Measurement of Subretinal Blebs Using Microscope-Integrated Optical Coherence Tomography. Transl Vis Sci Technol. 2018 Apr 5;7(2):19. doi: 10.1167/tvst.7.2.19. eCollection 2018 Apr. — View Citation

Kuo AN, Carrasco-Zevallos O, Toth CA, Izatt JA. Caveats to obtaining retinal topography with optical coherence tomography. Invest Ophthalmol Vis Sci. 2014 Sep 11;55(9):5730-1. doi: 10.1167/iovs.14-15212. No abstract available. — View Citation

Kuo AN, McNabb RP, Chiu SJ, El-Dairi MA, Farsiu S, Toth CA, Izatt JA. Correction of ocular shape in retinal optical coherence tomography and effect on current clinical measures. Am J Ophthalmol. 2013 Aug;156(2):304-11. doi: 10.1016/j.ajo.2013.03.012. Epub 2013 May 6. — View Citation

Machemer R, Parel JM. An improved microsurgical ceiling-mounted unit and automated television. Am J Ophthalmol. 1978 Feb;85(2):205-9. doi: 10.1016/s0002-9394(14)75949-5. — View Citation

Machemer R. The development of pars plana vitrectomy: a personal account. Graefes Arch Clin Exp Ophthalmol. 1995 Aug;233(8):453-68. doi: 10.1007/BF00183425. No abstract available. — View Citation

Mirza RG, Johnson MW, Jampol LM. Optical coherence tomography use in evaluation of the vitreoretinal interface: a review. Surv Ophthalmol. 2007 Jul-Aug;52(4):397-421. doi: 10.1016/j.survophthal.2007.04.007. — View Citation

Nam DH, Desouza PJ, Hahn P, Tai V, Sevilla MB, Tran-Viet D, Cunefare D, Farsiu S, Izatt JA, Toth CA. INTRAOPERATIVE SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY IMAGING AFTER INTERNAL LIMITING MEMBRANE PEELING IN IDIOPATHIC EPIRETINAL MEMBRANE WITH CONNECTING STRANDS. Retina. 2015 Aug;35(8):1622-30. doi: 10.1097/IAE.0000000000000534. — View Citation

Parel JM, Machemer R, Aumayr W. A new concept for vitreous surgery. 5. An automated operating microscope. Am J Ophthalmol. 1974 Feb;77(2):161-8. doi: 10.1016/0002-9394(74)90668-0. No abstract available. — View Citation

Pasricha ND, Bhullar PK, Shieh C, Carrasco-Zevallos OM, Keller B, Izatt JA, Toth CA, Freedman SF, Kuo AN. Four-dimensional Microscope-Integrated Optical Coherence Tomography to Visualize Suture Depth in Strabismus Surgery. J Pediatr Ophthalmol Strabismus. 2017 Feb 14;54:e1-e5. doi: 10.3928/01913913-20170201-01. — View Citation

Pasricha ND, Shieh C, Carrasco-Zevallos OM, Keller B, Cunefare D, Mehta JS, Farsiu S, Izatt JA, Toth CA, Kuo AN. Needle Depth and Big-Bubble Success in Deep Anterior Lamellar Keratoplasty: An Ex Vivo Microscope-Integrated OCT Study. Cornea. 2016 Nov;35(11):1471-1477. doi: 10.1097/ICO.0000000000000948. — View Citation

Pasricha ND, Shieh C, Carrasco-Zevallos OM, Keller B, Izatt JA, Toth CA, Kuo AN. Real-Time Microscope-Integrated OCT to Improve Visualization in DSAEK for Advanced Bullous Keratopathy. Cornea. 2015 Dec;34(12):1606-10. doi: 10.1097/ICO.0000000000000661. — View Citation

Qian R, Carrasco-Zevallos OM, Mangalesh S, Sarin N, Vajzovic L, Farsiu S, Izatt JA, Toth CA. Characterization of Long Working Distance Optical Coherence Tomography for Imaging of Pediatric Retinal Pathology. Transl Vis Sci Technol. 2017 Oct 16;6(5):12. doi: 10.1167/tvst.6.5.12. eCollection 2017 Oct. — View Citation

Seider MI, Tran-Viet D, Toth CA. MACULAR PSEUDO-HOLE IN SHAKEN BABY SYNDROME: UNDERSCORING THE UTILITY OF OPTICAL COHERENCE TOMOGRAPHY UNDER ANESTHESIA. Retin Cases Brief Rep. 2016 Summer;10(3):283-5. doi: 10.1097/ICB.0000000000000251. — View Citation

Shen L, Carrasco-Zevallos O, Keller B, Viehland C, Waterman G, Hahn PS, Kuo AN, Toth CA, Izatt JA. Novel microscope-integrated stereoscopic heads-up display for intrasurgical optical coherence tomography. Biomed Opt Express. 2016 Apr 6;7(5):1711-26. doi: 10.1364/BOE.7.001711. eCollection 2016 May 1. — View Citation

Shin JY, Yu HG. Visual prognosis and spectral-domain optical coherence tomography findings of myopic foveoschisis surgery using 25-gauge transconjunctival sutureless vitrectomy. Retina. 2012 Mar;32(3):486-92. doi: 10.1097/IAE.0b013e31822058d1. — View Citation

Singh MS, MacLaren RE. Stem cells as a therapeutic tool for the blind: biology and future prospects. Proc Biol Sci. 2011 Oct 22;278(1721):3009-16. doi: 10.1098/rspb.2011.1028. Epub 2011 Aug 3. — View Citation

Tan DT, Mehta JS. Future directions in lamellar corneal transplantation. Cornea. 2007 Oct;26(9 Suppl 1):S21-8. doi: 10.1097/ICO.0b013e31812f685c. — View Citation

Tao YK, Ehlers JP, Toth CA, Izatt JA. Intraoperative spectral domain optical coherence tomography for vitreoretinal surgery. Opt Lett. 2010 Oct 15;35(20):3315-7. doi: 10.1364/OL.35.003315. — View Citation

Todorich B, Shieh C, DeSouza PJ, Carrasco-Zevallos OM, Cunefare DL, Stinnett SS, Izatt JA, Farsiu S, Mruthyunjaya P, Kuo AN, Toth CA. Impact of Microscope-Integrated OCT on Ophthalmology Resident Performance of Anterior Segment Surgical Maneuvers in Model Eyes. Invest Ophthalmol Vis Sci. 2016 Jul 1;57(9):OCT146-53. doi: 10.1167/iovs.15-18818. — View Citation

Viehland C, Keller B, Carrasco-Zevallos OM, Nankivil D, Shen L, Mangalesh S, Viet du T, Kuo AN, Toth CA, Izatt JA. Enhanced volumetric visualization for real time 4D intraoperative ophthalmic swept-source OCT. Biomed Opt Express. 2016 Apr 12;7(5):1815-29. doi: 10.1364/BOE.7.001815. eCollection 2016 May 1. — View Citation

Weiland JD, Cho AK, Humayun MS. Retinal prostheses: current clinical results and future needs. Ophthalmology. 2011 Nov;118(11):2227-37. doi: 10.1016/j.ophtha.2011.08.042. — View Citation

* Note: There are 39 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Test and provide feedback on the intraoperative system both in laboratory and then in the operating room. The primary outcome of this project is to integrate optical coherence tomography (OCT) with the surgical environment through novel advances in OCT technology, automated tracking of surgical instruments and tools, and fusion of OCT controls, images and measurements into a seamless interface for the surgeon. 8.5 years
See also
  Status Clinical Trial Phase
Recruiting NCT05863689 - Microvascular Ocular Changes of Systemic Lupus Erythematous
Completed NCT06235346 - Ocular Effects of Synthetic Cannabinoids
Completed NCT04776863 - Effect of Smokeless Tobacco on Anterior Segment
Completed NCT04831047 - The Effect of Upneeq (Oxymetazoline Hydrochloride 0.1%) on Eyelid Position, Eye Redness, and Eye Appearance Phase 4
Recruiting NCT02912780 - Introduction of Microsystems in a Level 3 Neonatal Intensive Care Unit N/A
Completed NCT04021225 - Comparison of Ectoin® Containing Eye Drops and Ectoin® Containing Eye Spray With the Eye Spray Tears Again® N/A
Recruiting NCT00345280 - Ocular Surface Changes in Patients With Cystic Fibrosis Phase 1