Epilepsy Clinical Trial
Official title:
Acute Modulation of Stereotyped High-Frequency Oscillations With a Closed-Loop Brain Interchange System in Drug-Resistant Epilepsy
Verified date | January 2024 |
Source | Mayo Clinic |
Contact | Nuri F Ince, PhD |
Phone | 7137434461 |
nfince[@]uh.edu | |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
Overall, this study will investigate the functional utility of stereotyped HFOs by capturing them with a new implantable system (Brain Interchange - BIC of CorTec), which can sample neural data at higher rates >=1kHz and deliver targeted electrical stimulation to achieve seizure control. In contrast to current closed-loop systems (RNS), which wait for the seizure to start before delivering stimulation, the BIC system will monitor the spatial topography and rate of stereotyped HFOs and deliver targeted stimulation to these HFO generating areas to prevent seizures from occurring. If the outcomes of our research in an acute setting become successful, the investigators will execute a clinical trial and run the developed methods with the implantable BIC system in a chronic ambulatory setting.
Status | Recruiting |
Enrollment | 20 |
Est. completion date | August 31, 2026 |
Est. primary completion date | July 1, 2026 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 3 Years to 70 Years |
Eligibility | Inclusion Criteria: - patients with medically refractory epilepsy, who have been deemed appropriate candidates for intracranial EEG monitoring - Adult men and women (18= age <70 years) - children (3= age <18 years) - includes women and minorities Exclusion Criteria: - Subjects will be excluded if their condition makes them unable to continue with recordings. |
Country | Name | City | State |
---|---|---|---|
United States | Baylor College of Medicine | Houston | Texas |
United States | University of Houston | Houston | Texas |
Lead Sponsor | Collaborator |
---|---|
Mayo Clinic | Baylor College of Medicine, CorTec GmbH, National Institute of Neurological Disorders and Stroke (NINDS) |
United States,
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Robustness in Data Transmission | Outcome-1 will quantify the feasibility of robust data recording and transmission with the BIC system in the epilepsy monitoring unit (EMU). The investigators will develop software tools to communicate with the BIC directly from MATLAB and Simulink. The incoming data from the implantable system will be visualized with gHIsys, the high-speed data processing libraries of gTec. At the end of the first year, in the epilepsy monitoring unit (EMU), the investigators will test the feasibility of recoding iEEG data from 2 patients continuously over 24 hours with less than <5% data loss. The BIC system will not be implanted but used externally to record the neural data. The research team will also test to record iEEG/ECoG data simultaneously with 2 BIC units to be ready for those cases where the number of recording channels are larger than =>32 and <=64. At this stage Outcome-1 is only related to the device feasibility (robust data transmission) not health related outcome. | Over 24 hours within the first year of project | |
Primary | Feasibility of Detection of Stereotyped HFOs | Outcome-2 will test the feasibility of capturing stereotyped HFO (sHFO) with the BIC system in the EMU setting. Once the feasibility of robust data transmission as listed in (Outcome-1) is tested, the neural activity will be recorded over 24 hours using the BIC system from 10 patients. The hardware will not be implanted but used externally to record the neural data. Then, the research team will compare whether the sHFO detection and SOZ localization accuracy is significantly different between the BIC and FDA approved amplifier. If the investigators can detect stereotyped HFOs with a rate not less than 75% of FDA approved clinical amplifier and predict the SOZ in 8/10 patients, then the research team will move to the second phase of the project to test Outcome-3. Outcome-2 tests the feasibility of capturing relevant neural events with the external BIC system and compares the recording quality to the FDA approved amplifiers. Outcome-2 does not test any health-related outcome. | Within the first 3 years of the project | |
Primary | Feasibility of Delivering Closed-Loop Stimulation | Outcome-3 will test the feasibility of delivering of closed-loop stimulation with the BIC system. If the detection of sHFO with the BIC system is feasible (Outcome-2), the investigators will start to test the online methods on the previously recorded datasets to isolate sHFOs in streaming iEEG/ECoG. Using the computer in the loop real-time system and the BIC, in the last 2 years, closed-loop stimulation will be delivered. In total 8 patients will be recruited for this particular purpose. Targeted stimulation will be delivered to those channels associated with sHFOs and other areas which are not associated with sHFOs. The research team will test if the device can deliver stimulation to selected channels without any failure. The BIC system will not be implanted but used externally to deliver the stimulation. Outcome-3 does not test whether the system can control the seizures of the patients. It only investigates the feasibility of delivering closed-loop stimulation. | In the 4th and 5th years of the project |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT04595513 -
Stopping TSC Onset and Progression 2: Epilepsy Prevention in TSC Infants
|
Phase 1/Phase 2 | |
Completed |
NCT02909387 -
Adapting Project UPLIFT for Blacks in Georgia
|
N/A | |
Completed |
NCT05552924 -
Self Acupressure on Fatigue and Sleep Quality in Epilepsy Patients
|
N/A | |
Terminated |
NCT01668654 -
Long-term, Open-label Safety Extension Study of Retigabine/Ezogabine in Pediatric Subjects (>= 12 Years Old) With POS or LGS
|
Phase 3 | |
Not yet recruiting |
NCT05068323 -
Impact of Interictal Epileptiform Activity on Some Cognitive Domains in Newly Diagnosed Epileptic Patients
|
N/A | |
Completed |
NCT03994718 -
Creative Arts II Study
|
N/A | |
Recruiting |
NCT04076449 -
Quantitative Susceptibility Biomarker and Brain Structural Property for Cerebral Cavernous Malformation Related Epilepsy
|
||
Completed |
NCT00782249 -
Trial Comparing Different Stimulation Paradigms in Patients Treated With Vagus Nerve Stimulation for Refractory Epilepsy
|
N/A | |
Completed |
NCT03683381 -
App-based Intervention for Treating Insomnia Among Patients With Epilepsy
|
N/A | |
Recruiting |
NCT05101161 -
Neurofeedback Using Implanted Deep Brain Stimulation Electrodes
|
N/A | |
Active, not recruiting |
NCT06034353 -
Impact of Pharmacist-led Cognitive Behavioral Intervention on Adherence and Quality of Life of Epileptic Patients
|
N/A | |
Recruiting |
NCT05769933 -
Bridging Gaps in the Neuroimaging Puzzle: New Ways to Image Brain Anatomy and Function in Health and Disease Using Electroencephalography and 7 Tesla Magnetic Resonance Imaging
|
||
Not yet recruiting |
NCT06408428 -
Glioma Intraoperative MicroElectroCorticoGraphy
|
N/A | |
Not yet recruiting |
NCT05559060 -
Comorbidities of Epilepsy(Cognitive and Psychiatric Dysfunction)
|
||
Completed |
NCT02646631 -
Behavioral and Educational Tools to Improve Epilepsy Care
|
N/A | |
Completed |
NCT02952456 -
Phenomenological Approach of Epilepsy in Patients With Epilepsy
|
||
Completed |
NCT02977208 -
Impact of Polymorphisms of OCT2 and OCTN1 on the Kinetic Disposition of Gabapentin in Patients Undergoing Chronic Use
|
Phase 4 | |
Recruiting |
NCT02539134 -
TAK-935 Multiple Rising Dose Study in Healthy Participants
|
Phase 1 | |
Completed |
NCT02491073 -
Study to Evaluate Serum Free Thyroxine (FT4) and Free Triiodothyronine (FT3) Measurements for Subjects Treated With Eslicarbazeine Acetate (ESL)
|
N/A | |
Terminated |
NCT02757547 -
Transcranial Magnetic Stimulation for Epilepsy
|
N/A |