Epilepsy Clinical Trial
Official title:
Retrospective Analysis of Resting-State EEG in the Diagnosis of Epilepsy to Validate a Computational Biomarker for Seizure Susceptibility
The primary aim is to validate a set of computational biomarkers as potential decision support in epilepsy on a large cohort of study participants that were diagnosed with epilepsy and controls that ended up with another diagnosis (such as syncope or non-epileptic seizures). The goal is to examine if the methodology works robustly on this large cohort, and can theoretically contribute to the reduction of misdiagnosis rates. The secondary aim is to examine whether the computational biomarkers could contribute to reducing the waiting time and the number of clinical appointments needed before a final diagnosis is made.
Mathematical models provide a powerful and useful tool with which to identify and understand biological mechanisms that may lead to the risk of having seizures as well as how they generate, propagate and terminate (Wendling, 2005). Mathematical models that combine experimental and clinical detail at diverse scales have revealed the importance of many microscopic and macroscopic mechanisms in the generation of seizure-like activity, ranging from genetic and molecular mechanisms to changes in the excitability of neural populations leading to the generation of pathological oscillations (for review see Woldman & Terry (2015); Soltesz & Staley (2008)). Due to the increased availability of data recordings (EEG, MRI, MEG, CT, PET), there has been a significant increase in research studies that aim to identify novel biomarkers from these recordings with potential clinical value, using various different techniques (e.g. time-series analysis, computational modelling, machine learning). By combining mathematical and computational techniques, we have identified properties in the resting-state EEG (eyes closed, relaxed) of people with epilepsy that differ from those of controls as well as their first-degree relatives (Chowdhury et al., 2014). Developing these approaches and applying them to routine recordings from individuals with epilepsy against a control cohort (Schmidt et al., 2016) revealed levels of diagnostic accuracy similar to current general (i.e. non-specialist) neurology practices (60% sensitivity, 87% specificity, N=68). Crucially, our method correctly classified several subjects using their first EEG, whereas clinical diagnosis was confirmed only after prolonged telemetric recordings over many months. Since our methods and analysis depend on short segments of resting-state EEG only, its accuracy and efficacy do not rely on capturing epileptiform abnormalities, in contrast to the current use of EEG in diagnosing epilepsy. Since many EEGs return negative, clinicians are often faced with the problem of deciding on whether to opt for longer recordings of EEG or ambulatory or video EEG, which is currently the final method in the diagnostic cascade. This is time-consuming, expensive and relies on the availability and expertise of trained EEG-readers. By optimally interrogating short segments of background activity with mathematical and computational analysis, our methods, in the short term, provide additional evidence that could guide clinicians in future diagnostic steps. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT04595513 -
Stopping TSC Onset and Progression 2: Epilepsy Prevention in TSC Infants
|
Phase 1/Phase 2 | |
Completed |
NCT02909387 -
Adapting Project UPLIFT for Blacks in Georgia
|
N/A | |
Completed |
NCT05552924 -
Self Acupressure on Fatigue and Sleep Quality in Epilepsy Patients
|
N/A | |
Terminated |
NCT01668654 -
Long-term, Open-label Safety Extension Study of Retigabine/Ezogabine in Pediatric Subjects (>= 12 Years Old) With POS or LGS
|
Phase 3 | |
Not yet recruiting |
NCT05068323 -
Impact of Interictal Epileptiform Activity on Some Cognitive Domains in Newly Diagnosed Epileptic Patients
|
N/A | |
Completed |
NCT03994718 -
Creative Arts II Study
|
N/A | |
Recruiting |
NCT04076449 -
Quantitative Susceptibility Biomarker and Brain Structural Property for Cerebral Cavernous Malformation Related Epilepsy
|
||
Completed |
NCT00782249 -
Trial Comparing Different Stimulation Paradigms in Patients Treated With Vagus Nerve Stimulation for Refractory Epilepsy
|
N/A | |
Completed |
NCT03683381 -
App-based Intervention for Treating Insomnia Among Patients With Epilepsy
|
N/A | |
Recruiting |
NCT05101161 -
Neurofeedback Using Implanted Deep Brain Stimulation Electrodes
|
N/A | |
Active, not recruiting |
NCT06034353 -
Impact of Pharmacist-led Cognitive Behavioral Intervention on Adherence and Quality of Life of Epileptic Patients
|
N/A | |
Recruiting |
NCT05769933 -
Bridging Gaps in the Neuroimaging Puzzle: New Ways to Image Brain Anatomy and Function in Health and Disease Using Electroencephalography and 7 Tesla Magnetic Resonance Imaging
|
||
Not yet recruiting |
NCT06408428 -
Glioma Intraoperative MicroElectroCorticoGraphy
|
N/A | |
Not yet recruiting |
NCT05559060 -
Comorbidities of Epilepsy(Cognitive and Psychiatric Dysfunction)
|
||
Completed |
NCT02646631 -
Behavioral and Educational Tools to Improve Epilepsy Care
|
N/A | |
Completed |
NCT02952456 -
Phenomenological Approach of Epilepsy in Patients With Epilepsy
|
||
Completed |
NCT02977208 -
Impact of Polymorphisms of OCT2 and OCTN1 on the Kinetic Disposition of Gabapentin in Patients Undergoing Chronic Use
|
Phase 4 | |
Recruiting |
NCT02539134 -
TAK-935 Multiple Rising Dose Study in Healthy Participants
|
Phase 1 | |
Terminated |
NCT02757547 -
Transcranial Magnetic Stimulation for Epilepsy
|
N/A | |
Completed |
NCT02491073 -
Study to Evaluate Serum Free Thyroxine (FT4) and Free Triiodothyronine (FT3) Measurements for Subjects Treated With Eslicarbazeine Acetate (ESL)
|
N/A |