Clinical Trials Logo

Dystonic Disorders clinical trials

View clinical trials related to Dystonic Disorders.

Filter by:

NCT ID: NCT05713721 Recruiting - Dystonia Clinical Trials

Sensorimotor Integration in Monogenic Parkinson-dystonia Syndromes

SensoMo-PD
Start date: January 1, 2023
Phase:
Study type: Observational

Hereditary Parkinson and dystonia syndromes are rare, as are people who carry the predisposition for Parkinson or dystonia but do not have symptoms. It is particularly important to study these people because they are a good model for understanding the development of common non-hereditary Parkinson's and dystonia. To do this, the investigators want to look at how the brain works and how different areas of the brain communicate with each other. The investigators want to identify differences in brain regions connecting perception and action between mutation carriers that develop clinical symptoms and those who stay healthy in different subgroups of inherited Parkinson-dystonia syndromes. Mutation carriers with and without symptoms of three different inherited Parkinson-dystonia syndromes will be investigated at their homes with the help of a mobile examination unit. To detect even subtle signs, which the mutation carriers might not even be aware of, the investigators will use a detailed video-based and -documented movement examination and a non-invasive magnetic stimulation technique that investigates how a sensory, i.e., electrical stimulus can influence the motor response in a hand muscle. Our study will allow the investigators, on the one hand, to define specific markers that protect some mutation carriers from having clinical symptoms and, on the other hand, to identify neurophysiological characteristics that all mutation carriers share whether or not they have clinical symptoms. These are important information for a better understanding of the basis of these disorders and for the development of new treatment strategies, which can also be transferred to genetically-undefined Parkinson's and dystonia syndromes. Through this study, large groups of mutation carriers that have received an in-depth clinical and neurophysiological examination and can be investigated longitudinally in future studies will be build up.

NCT ID: NCT05671068 Not yet recruiting - Myoclonus-Dystonia Clinical Trials

EMOTION & COGNITION IN MYOCLONUS DYSTONIA (AGENT10-ECODYST)

Start date: January 2023
Phase:
Study type: Observational

Background: Myoclonus dystonia (DYT-SGCE) is characterized by myoclonus and dystonia. Such condition is associated with a high prevalence of psychiatric symptoms which are part of the phenotype. The mechanisms underlying these non-motor symptoms are still poorly understood. Objective: To investigate the neural correlates of cognition and emotion in DYT-SGCE. Design: Participants will have 1 - 2 visits at the clinical center. The total participation time is less than 24 hours. Participants will have a medical interview and a neurological exam. They may give a urine sample before MRI. Participants will have a short neuropsychologic and psychiatric interviews. Participants will have MRI scans. They will do small tasks or be asked to imagine things during the scanning.

NCT ID: NCT05663840 Recruiting - Dystonia Clinical Trials

Effects of Exercise on Dystonia Pathophysiology

Start date: October 13, 2022
Phase: N/A
Study type: Interventional

The purpose of this research study is to investigate how the brain and motor behavior changes in individuals with dystonia in response to exercise training.

NCT ID: NCT05612464 Not yet recruiting - Dystonia Clinical Trials

Enhancing Sensorimotor Processing in Children With Dystonia

Start date: February 1, 2023
Phase:
Study type: Observational

Dystonia is a severely disabling movement disorder with no cure, in which people suffer painful muscle spasms causing twisting movements and abnormal postures. There are many causes, including genetic conditions and brain injury. The most common cause in childhood is dystonic cerebral palsy (CP) which often affects the whole body. The underlying mechanisms are unknown, but there is growing evidence to implicate abnormal brain processing by the brain of incoming "sensory" information (e.g., signals to the brain from our senses of touch and body position): the distorted perception of these signals disrupts the way the brain produces instructions for planning and performing movements. The investigator's previous studies have shown that the way the brain processes sensory information related to movement is abnormal in children with dystonia and dystonic CP, by using methods that record the EEG (electroencephalogram - brain wave signals) and/or EMG (electromyogram - electrical signal from muscles). A specific brain rhythm (called mu) typically shows well-defined changes in response to movement, and reflects processing of sensory information. The investigator's work shows these rhythm changes are abnormal in children with dystonia/dystonic CP. This study will explore if these findings can improve treatment. In particular the study team will investigate whether children and young people with dystonia/dystonic CP can enhance these mu rhythm responses during a movement task by using feedback of their brain rhythms displayed as a cartoon/game on a computer. The investigators will also assess whether enhanced mu activity is associated with improved movement control. This would open future possibilities to use such devices for therapy/rehabilitation. Children and young people with dystonia/dystonic CP aged 5-25 years will be recruited, along with age-matched controls. Studies will last 2-3 hours with time for breaks and will be conducted at Evelina London Children's Hospital and Barts Health Trust, with the option for home visits if preferable for families.

NCT ID: NCT05592028 Available - Clinical trials for X-Linked Dystonia Parkinsonism

High Intensity Focused Ultrasound for X-linked Dystonia-parkinsonism

Start date: n/a
Phase:
Study type: Expanded Access

X-linked dystonia-parkinsonism (XDP) is a rare, X-linked, adult-onset, and progressive movement disorder seen almost exclusively in men from Panay Island in the Philippines. The disease is associated with mutations involving the DYT3/TAF1 gene, and all the cases described so far have been linked to Filipino ancestry. Although XDP is very rare globally, the prevalence is 5.74 per 100,000 individuals in Panay Island and 0.31 per 100,000 in the Philippines as a whole. Majority of patients (95%) were males, and the mean age of onset was 39 years. The mean duration of illness was 16 years, and the mean age of death was 55.6 years.

NCT ID: NCT05580302 Recruiting - Spasmodic Dysphonia Clinical Trials

Cortical Silent Period in Laryngeal Dystonia

cSPDystonia
Start date: October 10, 2022
Phase:
Study type: Observational [Patient Registry]

The goal of this observational study is to evaluate the cortical silent period (cSP) in cricothyroid muscle (CT) in laryngeal dystonia and control healthy subjects. The study will provide norms related to latency and amplitude of motor evoked potentials (MEPs) and duration of cSP in CT muscle in laryngeal dystonia and control healthy subjects. Findings may give a baseline in comparison to findings in laryngeal diseases and insight into maladaptive cortical control function during phonation in laryngeal diseases like laryngeal dystonia.

NCT ID: NCT05506085 Recruiting - Laryngeal Dystonia Clinical Trials

Deep Brain Stimulation for Laryngeal Dystonia: From Mechanism to Optimal Application

Start date: October 1, 2022
Phase:
Study type: Observational

Deep Brain Stimulation (DBS) is a neurosurgical procedure used to treat tremors, and dystonia. This study will enroll people who have a form of focal dystonia that affects their vocal cords called Adductor Laryngeal dystonia (ADLD). Participants will undergo Deep Brain Stimulation surgery to treat laryngeal dystonia as part of their clinical care. Before surgery, as part of the study they will have specialized testing to study the movement of the vocal cords, as well as functional magnetic resonance imaging (fMRI). While in the operating room, researchers will examine brain waves to better understand how faulty brain firing patterns lead to dystonia. After surgery, and activation of the deep brain stimulator, participants will repeat speech testing and vocal cord imaging as well as magnetic resonance imaging (MRI).

NCT ID: NCT05502718 Recruiting - Dystonia, Cervical Clinical Trials

Exercise Program for Patients With Cervical Dystonia Who Are Treated With Botulinum Toxin Type A

Start date: October 1, 2022
Phase: N/A
Study type: Interventional

Dystonia is involuntary movements characterized by posture abnormalities or repetitive movements as a result of continuous or intermittent simultaneous contraction of opposing muscle groups. Dystonic movements are twisted and twisted in a certain pattern. Dystonia is named in different ways according to its distribution in the body. Cervical dystonia is the most common form of regional dystonia and can be defined as involuntary movements of the head in normal upright posture.Cervical dystonia has different names according to the posture of the neck (torticollis, laterocollis, anterocollis and retrocollis). These different postures can be seen individually as well as together.Pain in cervical dystonia is seen in approximately 70% of patients, and this condition is closely related to involuntary contractions of neck muscles and neck posture disorder. Fatigue, anxiety, unhappiness, decreased self-efficacy and limitation in daily living activities due to decreased neck movements are the main causes of disability in patients with cervical dystonia. The first-line treatment of cervical dystonia consists of injecting botulinum toxin type A into the relevant muscles to alleviate these complaints.There is increasing evidence that range of motion, stretching, and relaxation exercises, in addition to botulinum toxin therapy, have beneficial effects on pain and disability in patients with cervical dystonia.In this study, patients with cervical dystonia who received botulinum toxin type A injection will be divided into study group and control group.The patients in the study group will be given stretching, strengthening, breathing and rhythmic coordination exercises for the muscles involved. (Personalized exercise program) In the control group, only breathing and rhythmic coordination exercises will be given and the two groups will be compared.Thus, it is aimed to investigate the effect of a personalized exercise program on clinical findings and the patient's quality of life.

NCT ID: NCT05467228 Not yet recruiting - Laryngeal Dystonia Clinical Trials

Laryngeal Vibro-tactile Stimulation as a Non-invasive Symptomatic Treatment for Spasmodic Dysphonia

Start date: January 1, 2025
Phase: Phase 2
Study type: Interventional

The general aim of the research is to provide scientific evidence that vibro-tactile stimulation (VTS) represents a non-invasive form of neuromodulation that can induce measurable improvements in the speech of patients with laryngeal dystonia (LD) - also called spasmodic dysphonia (SD).

NCT ID: NCT05416905 Recruiting - Clinical trials for Deep Brain Stimulation

Deep Brain Stimulation for Idiopathic Craniofacial Dystonia: GPi or STN

MEIGES
Start date: June 22, 2022
Phase: N/A
Study type: Interventional

MEIGES is a prospective, multicenter, randomized controlled clinical trial with the primary hypothesis that, STN-DBS is non-inferior to GPi-DBS for motor symptoms improvements at 365 days postoperatively in patients with idiopathic craniofacial dystonia.