Clinical Trials Logo

Clinical Trial Summary

Dystonia is a movement disorder seen in both children and adults that is characterized by "sustained or intermittent muscle contractions causing abnormal, often repetitive, movements, postures, or both." Secondary dystonia is far more common in pediatric populations than primary dystonia, and far more recalcitrant to standard pharmacologic and surgical treatments including Deep Brain Stimulation (DBS). There exists a large unmet need to develop new therapeutics, treatment strategies, and outcome measures for pediatric secondary dystonia.

The investigators are proposing to investigate the ventralis oralis posterior nucleus (Vop) of the thalamus as a new target for DBS in secondary dystonia. Prior to the development of DBS, the main surgical treatment of dystonia was thalamotomy. Although there were many different targets in the thalamus, often done in staged procedures, the most common and successful targeted nuclei was the Vop, which is traditionally thought to be the pallidal receiving area. Previous lesioning of Vop produced improvements in dystonia but intolerable side effects, especially when implanted bilaterally. However, given that secondary dystonia patients were often reported to have superior results to primary dystonia it is reasonable to believe that if the side effects can be modulated, that targeting of the Vop nucleus with DBS could be a viable alternative to Globus Pallidus interna (GPi). Given that Deep Brain Stimulation is a treatment that is inherently adjustable, it is conceivable that settings on the Deep Brain Stimulation could be adjusted to allow for clinical benefit with minimal side effects. Indeed, there have been several scattered successful case reports attesting to this possibility.


Clinical Trial Description

Dystonia is a movement disorder seen in both children and adults that is characterized by "sustained or intermittent muscle contractions causing abnormal, often repetitive, movements, postures, or both." Secondary dystonia has evolved to refer to dystonia resulting from damage to the nervous system or degenerative disease processes. While primary dystonia is generally thought to arise from genetic causes, secondary dystonias have a variety of causes including perinatal injuries (cerebral palsy), central nervous system infections, traumatic brain injuries, and many different metabolic, neurodegenerative, and mitochondrial conditions. Secondary dystonia is far more common in pediatric populations than primary dystonia, and far more recalcitrant to standard pharmacologic and surgical treatments including Deep Brain Stimulation. Given that most treatments for dystonia are developed for primary dystonia and then applied to secondary dystonia, it is not surprising that this effectiveness gap exists. Thus, there exists a large unmet need to develop new therapeutics, treatment strategies, and outcome measures for pediatric secondary dystonia.

Deep Brain Stimulation (DBS) is one such therapeutic intervention that has potential to improve secondary dystonia. DBS is a surgical treatment for several different movement disorders that evolved from functional stereotactic neurosurgery techniques initially used to lesion specific deep brain structures. While Essential Tremor and Idiopathic Parkinson's Disease have predictable and consistent response rates to DBS in carefully selected patients, response rates of dystonia have been much more inconsistent. One predictor of success has been the presence of DYT-1 mutation, the most common known genetic cause of primary dystonia. Success rates in DYT-1 dystonia are consistently high with reductions in dystonia typically greater than 80%. However, the results in secondary dystonia have been much more modest and inconsistent. A recent meta-analysis found that on average, dystonia symptoms as measured by common rating scales improve 23% following DBS for dystonic cerebral palsy (the most common cause of secondary dystonia), however there are frequent cases of non-responders. Additionally, there have been very few examination, radiological or laboratory predictors of good response to DBS, except for genetic confirmation of DYT-119. However, across both primary and secondary dystonia, younger age at the time of surgery (less than 21 years old) and shorter duration of symptoms (less than 15 years) have been shown to be the most likely predictive factors for a good postoperative outcome. This has led many to suggest that DBS should be offered earlier in the course of intractable dystonia, prior to the development of permanent complications such as orthopedic contractures. Thus, we are setting an upper age limit of 25 to account for the concern that earlier implantation leads to improved outcomes. The lower age limit of 7 reflects the fact that the current humanitarian exemption for DBS for dystonia currently goes down to age 7. Thus, there exists a need to both improve patient selection as well as application of DBS for secondary dystonia in children. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT03078816
Study type Interventional
Source University of California, San Francisco
Contact
Status Completed
Phase N/A
Start date March 3, 2017
Completion date July 24, 2019

See also
  Status Clinical Trial Phase
Completed NCT01433757 - Ampicillin for DYT-1 Dystonia Motor Symptoms Phase 1
Recruiting NCT00971854 - Alteration of Deep Brain Stimulation Parameters for Dystonia N/A
Enrolling by invitation NCT00355927 - Sedation During Microelectrode Recordings Before Deep Brain Stimulation for Movement Disorders. N/A
Completed NCT00169338 - Pallidal Stimulation in Patients With Post-anoxic and Idiopathic Dystonia Phase 2
Completed NCT00004421 - Deep Brain Stimulation in Treating Patients With Dystonia Phase 2/Phase 3
Terminated NCT03270189 - Effect of the Visual Information Change in Functional Dystonia N/A
Recruiting NCT02583074 - Clinical Trial of STN-DBS for Primary Cranial-Cervical Dystonia N/A
Recruiting NCT06117020 - Single and Multiple Ascending Dose Study of MTR-601 in Healthy Individuals Phase 1
Completed NCT01432899 - Studying Childhood-Onset Hemidystonia
Completed NCT04948684 - Efficacy of Botulinum Toxin for the Treatment of Dystonia Associated With Parkinson's Disease and Atypical Parkinsonism
Completed NCT05106816 - The Effects of Vibrotactile Stimulation in Patients With Movement Disorders N/A
Recruiting NCT05027997 - Exploratory Study of Dipraglurant (ADX48621) for the Treatment of Patients With Blepharospasm Phase 2
Completed NCT00465790 - Research of Biomarkers in Parkinson Disease Phase 0
Active, not recruiting NCT00142259 - Efficacy and Safety of DBS of the GPi in Patients With Primary Generalized and Segmental Dystonia Phase 4
Recruiting NCT05663840 - Effects of Exercise on Dystonia Pathophysiology N/A
Not yet recruiting NCT06038097 - Efficacy and Safety of Radiofrequency Pallidotomy in the Management of Dystonia N/A
Recruiting NCT04286308 - Cortical-Basal Ganglia Speech Networks N/A
Active, not recruiting NCT03582891 - The Motor Network in Parkinson's Disease and Dystonia: Mechanisms of Therapy N/A
Completed NCT03318120 - Exercise Training in Dystonia N/A
Completed NCT04568681 - Deep Brain Stimulation Effects in Dystonia