Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT03173495
Other study ID # 48763715.3.0000.5347
Secondary ID
Status Completed
Phase N/A
First received May 4, 2017
Last updated May 31, 2017
Start date January 10, 2016
Est. completion date December 15, 2016

Study information

Verified date May 2017
Source Federal University of Rio Grande do Sul
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

Cardiovascular Diseases (CVDs) are the leading causes of death in the world and in Brazil. In 2001, 12.45 million deaths on the globe (21% of the total) were caused by some CVD.

The composition of modern man's diet has changed drastically with the industrialization of food, resulting in the transition from a diet rich in fibers and complex carbohydrates to one with a high content of sugars and fats. Since the current dietary pattern is characterized by the consumption of three or more meals a day, containing a quantity of fat in the range of 20 to 70 g, individuals spend a large part of the day in the postprandial state, with continuous fluctuation of lipemia Over 18 hours. Food intake (postprandial state) is the dynamic, unstable response of the body that refers to rapid hormonal and lipoprotein remodeling. It is well established in the literature that high-fat meals (lipid overload) cause an increase in plasma triglycerides. Hypertriglyceridemia and / or elevated triglyceride-rich lipoproteins (LRT) (chylomicrons, VLDL and their remnants) in the postprandial state induces endothelial dysfunction via increased oxidative stress and is an independent risk factor for CVDs. Therefore, Postprandial Lipemia (PPL) is counted as an early marker of atherosclerotic process, metabolic abnormalities and endothelial dysfunction.

High-carbohydrate (CHO) diets may promote increased LDL-c, TG, VLDL and HDL-c reduction, as well as PPL, generating a lipid profile associated with an increased risk of CVDs. This effect appears to be more pronounced with the inclusion of simple carbohydrates (mono and disaccharides), although it also occurs with diets rich in complex carbohydrates (polysaccharides).

High fructose diets (HFDs) are a known model of induction of insulin resistance, dyslipidemia and DM2 in primates and humans. The chronic effect of fructose consumption has been well studied in the last decades due to its connection with obesity, resistance to Insulin, accumulation of visceral fat and dyslipidemia.

As the consumption of fructose is progressively increasing in society and its chronic exposure can generate a phenotypic effect of dyslipidemia and, consequently, the increased risk of CVDs, prevention and treatment strategies should be seen as an important public health issue . Thus, the objective of this study is to understand the effects of exercise on fat metabolism, since there is a lack of robust evidence about the possible cardioprotective and hypolipemic role of the same on HFD.


Description:

Background: Cardiovascular Diseases (CVDs) are the leading causes of death in the world and in Brazil. In 2001, 12.45 million deaths on the globe (21% of the total) were caused by some CVD.

Different studies agree that CVDs can be prevented by reducing risk factors, such as: smoking, inadequate diet (high in fat, simple carbohydrates and salt), physical inactivity, obesity, diabetes mellitus (DM), high levels of Lipids in the blood (dyslipidemia) and hyperglycemia even in the absence of a diagnosis of DM.

The composition of modern man's diet has changed drastically with the industrialization of food, resulting in the transition from a diet rich in fibers and complex carbohydrates to one with a high content of sugars and fats. Since the current dietary pattern is characterized by the consumption of three or more meals a day, containing a quantity of fat in the range of 20 to 70 g, individuals spend a large part of the day in the postprandial state, with continuous fluctuation of lipemia Over 18 hours.

Food intake (postprandial state) is the dynamic, unstable response of the body that refers to rapid hormonal and lipoprotein remodeling. It is well established in the literature that high-fat meals (lipid overload) cause an increase in plasma triglycerides. Hypertriglyceridemia and / or elevated triglyceride-rich lipoproteins (LRT) (chylomicrons, VLDL and their remnants) in the postprandial state induces endothelial dysfunction via increased oxidative stress and is an independent risk factor for CVDs. Therefore, Postprandial Lipemia (PPL) is counted as an early marker of atherosclerotic process, metabolic abnormalities and endothelial dysfunction.

High-carbohydrate (CHO) diets may promote increased LDL-c, TG, VLDL and HDL-c reduction, as well as PPL, generating a lipid profile associated with an increased risk of CVDs. This effect appears to be more pronounced with the inclusion of simple carbohydrates (mono and disaccharides), although it also occurs with diets rich in complex carbohydrates (polysaccharides).

High fructose diets (HFDs) are a known model of induction of insulin resistance, dyslipidemia and DM2 in primates and humans. The chronic effect of fructose consumption has been well studied in the last decades due to its connection with obesity, resistance to Insulin, accumulation of visceral fat and dyslipidemia.

Due to the increase in fructose consumption from beverages and processed foods, changes in lifestyle, mainly related to diet and exercise, should be seen as a means of prevention and first form of treatment of CVDs and changes in lipid metabolism.

Acute and chronic aerobic exercise seems to reduce the risk of atherosclerosis and CVD by reducing lipemia (improvement of TG, CT, LDL-c and HDL-c) and endothelial function. In addition, the exercise when performed the previous day has the ability to prevent the increase of PPL after a hyperlipidic meal, regardless of body mass. This effect may be considered a cardiometabolic protection and seems to occur as a result of the increase in lipoprotein lipase (LPL) activity and / or reduction of VLDL secretion in the liver.

As the consumption of fructose is progressively increasing in society and its chronic exposure can generate a phenotypic effect of dyslipidemia and, consequently, the increased risk of CVDs, prevention and treatment strategies should be seen as an important public health issue . Thus, the objective of this study is to understand the effects of exercise on fat metabolism, since there is a lack of robust evidence about the possible cardioprotective and hypolipemic role of the same on HFD.

Methods: The study was characterized as a crossover randomized clinical trial, with a 7 day washout period. The sample was composed of 12 sedentary men, aged between 20 and 40 years. All volunteers who agreed to participate in the study signed a two-way informed consent form (TCLE). The study protocol followed the recommendations of the Helsinki Declaration. Subjects were invited to perform three (3) protocols, in a randomized fashion, with a minimum period of one week interval (washout period). On day 0, they arrived to the laboratory at the end of the day, between 6 and 7pm, to perform 45min of treadmill exercise at 60% of the VO2peak or rest, depending on randomization. Soon after, he received a Standard Meal (SM; 60% carbohydrate, 20% fat, 20% protein) in the laboratory and was instructed to perform a 12-hour fast. On day 1, they arrived at the laboratory between 7 and 8 a.m and were submitted to basal blood collection. Soon after, they received a High Fat Meal (HFM) which consisted of sandwich with cream and cheese, added to the drink rich in FRUCTose (0.5 g / kg) or DEXtrose (isoenergetic). The meals had the same energy and macronutrients (50% fat, 40% carbohydrate and 10% protein) and should be consumed in 10 minutes. Blood samples were collected from 1 to 4 h after the meal consumption to analyze the postprandial parameters. Subsequently the subject was released to perform his daily activities outside the laboratory. On the same day, between 6 pm and 7 pm, the subject returned to the laboratory to remain at rest and receive a SM again and be instructed to perform 12 hours of fasting. On day 2, subjects reached the laboratory between 7 and 8 a.m. and again submitted to baseline blood collection. Soon after, they received HFM with a drink rich in DEXtrose (0.5g / kg). Blood samples were collected from 1 to 4 hours after eating the meal. A 24h food record was done to control subject's diet. Body composition was evaluated before intervention. The data were analyzed using the statistical package IBM SPSS statistics (Statistical Package for Social Sciences) version 20.0 (IBM, USA) for Windows. The distribution of all variables was analyzed using the Shapiro-Wilk test, and the analysis sphericity by the Mauchly test. In cases where the data did not pass the normality tests, the respective nonparametric tests were performed. Data from the experimental groups were treated by two-way ANOVA for repeated measurements (2 x 5). If necessary, the Bonferroni post-hoc was used to identify differences. Incremental and total area under the curve were analyzed by trapezoidal method. The difference between AUC was verified by one-way ANOVA with post-hoc Bonferroni. All results were expressed as mean and standard deviation, or median, where appropriate, and the accepted level of significance was 5%.


Recruitment information / eligibility

Status Completed
Enrollment 12
Est. completion date December 15, 2016
Est. primary completion date December 15, 2016
Accepts healthy volunteers Accepts Healthy Volunteers
Gender Male
Age group 20 Years to 40 Years
Eligibility Inclusion Criteria:

- BMI (18,5 to 24,9 kg/m²)

- Sedentary lifestyle (< 150 minutes exercise per week)

- Fructose intake < 25g per day

- Otherwise healthy

Exclusion Criteria:

- Smoker

- Drug user

- Using some medicine

- Fat metabolism disorders

- Orthopedic disorders

Study Design


Intervention

Dietary Supplement:
FRUCTOSE
Fructose-rich beverage with a high fat meal, without exercise.
DEXTROSE
Dextrose-rich beverage with a high fat meal (control), without exercise.
EXERCISE
45 minutes of 60% VO2peak aerobic exercise

Locations

Country Name City State
n/a

Sponsors (1)

Lead Sponsor Collaborator
Federal University of Rio Grande do Sul

Outcome

Type Measure Description Time frame Safety issue
Primary Triglycerides Parameter was analyzed by Cobas C111 4 hour postprandial test
Primary VLDL Parameter was analyzed by ELISA 4 hour postprandial test
Secondary Glycemia Parameter was analyzed by Cobas C111 4 hour postprandial test
Secondary Insulin Parameter was analyzed by Cobas C111 4 hour postprandial test
Secondary HDL Parameter was analyzed by Cobas C111 4 hour postprandial test
Secondary Non-HDL cholesterol Parameter was analyzed by formula 4 hour postprandial test
See also
  Status Clinical Trial Phase
Terminated NCT04591808 - Efficacy and Safety of Atorvastatin + Perindopril Fixed-Dose Combination S05167 in Adult Patients With Arterial Hypertension and Dyslipidemia Phase 3
Completed NCT04894318 - The Effect Of Low-Fat And Low-Cholesterol Dietary Intervention On LDL Sub-Groups In Turkısh Dyslipidemic Patients N/A
Completed NCT04862962 - Study to Evaluate the Safety of the Fixed-dose Combination Rosuvastatin/Ezetimibe for Patients With Dyslipidaemia
Completed NCT04052594 - A Study of LY3475766 in Healthy Participants Phase 1
Active, not recruiting NCT04270084 - Metabolic Optimization Through Diet/Lifestyle Improvements For Youth N/A
Completed NCT03241121 - Study of Eating Patterns With a Smartphone App and the Effects of Time Restricted Feeding in the Metabolic Syndrome N/A
Completed NCT04516291 - A Dose-Ranging Study With Vupanorsen (TRANSLATE-TIMI 70) Phase 2
Completed NCT03170752 - Implementing and Testing a Cardiovascular Assessment Screening Program (CASP) N/A
Completed NCT05124847 - TREating Pediatric Obesity N/A
Completed NCT04186780 - Effects of Lentinula Edodes Bars on Dyslipidemia and Oxidative Stress in Cholesterol Individuals: Randomized Study N/A
Not yet recruiting NCT03674333 - Effect of Adding Folic Acid on Lipid Parameters in Population With Dyslipidemias N/A
Not yet recruiting NCT06159543 - The Effects of Fresh Mango Consumption on Cardiometabolic Outcomes in Free-living Individuals With Prediabetes N/A
Terminated NCT01697735 - The Therapeutic Effects of Statins and Berberine on the Hyperlipemia Phase 4
Completed NCT00362908 - Effects of Low and Moderate Fat Diets on Lipids, Inflammation and Vascular Reactivity in the Metabolic Syndrome N/A
Completed NCT00455325 - Chloroquine to Treat People With Metabolic Syndrome Aim2 (ARCH-MS) Phase 2
Completed NCT00644709 - A Study Of Atorvastatin For The Treatment Of High Cholesterol In Patients At High Risk Of Coronary Heart Disease (CHD) Phase 4
Recruiting NCT05624658 - Effect of Combined Lipid-lowering Therapy on Atherosclerotic Plaque Vulnerability in Patients With ACS N/A
Recruiting NCT03988101 - Role of Statin in Venous Dysfunction in Patients With Venous Thromboembolism Event Phase 4
Recruiting NCT06024291 - Reducing Circulating Sphingolipid Levels to Optimise Cardiometabolic Health - The SphingoFIT Trial N/A
Completed NCT01218204 - A Study to Investigate the Safety, Tolerability, Pharmacokinetics and Pharmacodynamics of Administering Multiple Oral Doses of GSK1292263 Alone and With Atorvastatin Phase 2