Byrd AL, Belkaid Y, Segre JA The human skin microbiome. Nat Rev Microbiol. 2018 Mar;16(3):143-155. doi: 10.1038/nrmicro.2017.157. Epub 2018 Jan 15.
Chen CH, Tu CC, Kuo HY, Zeng RF, Yu CS, Lu HH, Liou ML Dynamic change of surface microbiota with different environmental cleaning methods between two wards in a hospital. Appl Microbiol Biotechnol. 2017 Jan;101(2):771-781. doi: 10.1007/s00253-016-7846-4. Epub 2016 Oct 22.
Christensen GD, Simpson WA, Bisno AL, Beachey EH Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect Immun. 1982 Jul;37(1):318-26. doi: 10.1128/iai.37.1.318-326.1982.
Coates M, Lee MJ, Norton D, MacLeod AS The Skin and Intestinal Microbiota and Their Specific Innate Immune Systems. Front Immunol. 2019 Dec 17;10:2950. doi: 10.3389/fimmu.2019.02950. eCollection 2019.
Cusco A, Catozzi C, Vines J, Sanchez A, Francino O Microbiota profiling with long amplicons using Nanopore sequencing: full-length 16S rRNA gene and the 16S-ITS-23S of the rrn operon. F1000Res. 2018 Nov 6;7:1755. doi: 10.12688/f1000research.16817.2. eCollection 2018.
Darouiche RO Device-associated infections: a macroproblem that starts with microadherence. Clin Infect Dis. 2001 Nov 1;33(9):1567-72. doi: 10.1086/323130. Epub 2001 Sep 26.
McBride ME, Duncan WC, Knox JM The environment and the microbial ecology of human skin. Appl Environ Microbiol. 1977 Mar;33(3):603-8. doi: 10.1128/aem.33.3.603-608.1977.
NCBI Resource Coordinators Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2016 Jan 4;44(D1):D7-19. doi: 10.1093/nar/gkv1290. Epub 2015 Nov 28.
Raad I, Costerton W, Sabharwal U, Sacilowski M, Anaissie E, Bodey GP Ultrastructural analysis of indwelling vascular catheters: a quantitative relationship between luminal colonization and duration of placement. J Infect Dis. 1993 Aug;168(2):400-7. doi: 10.1093/infdis/168.2.400.
Rozas M, Brillet F, Callewaert C, Paetzold B MinION Nanopore Sequencing of Skin Microbiome 16S and 16S-23S rRNA Gene Amplicons. Front Cell Infect Microbiol. 2022 Jan 5;11:806476. doi: 10.3389/fcimb.2021.806476. eCollection 2021.
Safdar N, Maki DG The pathogenesis of catheter-related bloodstream infection with noncuffed short-term central venous catheters. Intensive Care Med. 2004 Jan;30(1):62-7. doi: 10.1007/s00134-003-2045-z. Epub 2003 Nov 26.
Seekatz AM, Young VB Clostridium difficile and the microbiota. J Clin Invest. 2014 Oct;124(10):4182-9. doi: 10.1172/JCI72336. Epub 2014 Jul 18.
Sender R, Fuchs S, Milo R Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol. 2016 Aug 19;14(8):e1002533. doi: 10.1371/journal.pbio.1002533. eCollection 2016 Aug.
Sommer F, Anderson JM, Bharti R, Raes J, Rosenstiel P The resilience of the intestinal microbiota influences health and disease. Nat Rev Microbiol. 2017 Oct;15(10):630-638. doi: 10.1038/nrmicro.2017.58. Epub 2017 Jun 19.
Soufir L, Timsit JF, Mahe C, Carlet J, Regnier B, Chevret S Attributable morbidity and mortality of catheter-related septicemia in critically ill patients: a matched, risk-adjusted, cohort study. Infect Control Hosp Epidemiol. 1999 Jun;20(6):396-401. doi: 10.1086/501639.
Tacconelli E, Smith G, Hieke K, Lafuma A, Bastide P Epidemiology, medical outcomes and costs of catheter-related bloodstream infections in intensive care units of four European countries: literature- and registry-based estimates. J Hosp Infect. 2009 Jun;72(2):97-103. doi: 10.1016/j.jhin.2008.12.012. Epub 2009 Feb 25.
Timsit JF [Updating of the 12th consensus conference of the Societe de Reanimation de langue francaise (SRLF): catheter related infections in the intensive care unit]. Ann Fr Anesth Reanim. 2005 Mar;24(3):315-22. doi: 10.1016/j.annfar.2004.12.022. French.
Prospective Descriptive Study of the Cutaneous Microbiota of ICU Patients With Central Venous Catheter (ICMc)
Interventional studies are often prospective and are specifically tailored to evaluate direct impacts of treatment or preventive measures on disease.
Observational studies are often retrospective and are used to assess potential causation in exposure-outcome relationships and therefore influence preventive methods.
Expanded access is a means by which manufacturers make investigational new drugs available, under certain circumstances, to treat a patient(s) with a serious disease or condition who cannot participate in a controlled clinical trial.
Clinical trials are conducted in a series of steps, called phases - each phase is designed to answer a separate research question.
Phase 1: Researchers test a new drug or treatment in a small group of people for the first time to evaluate its safety, determine a safe dosage range, and identify side effects.
Phase 2: The drug or treatment is given to a larger group of people to see if it is effective and to further evaluate its safety.
Phase 3: The drug or treatment is given to large groups of people to confirm its effectiveness, monitor side effects, compare it to commonly used treatments, and collect information that will allow the drug or treatment to be used safely.
Phase 4: Studies are done after the drug or treatment has been marketed to gather information on the drug's effect in various populations and any side effects associated with long-term use.