Clinical Trials Logo

Clinical Trial Summary

The study used a new surgical technique: intraoperative fluorescence imaging,In the 1980s, some scholars proposed the concept of intraoperative fluorescein angiography.During vitrectomy, intraoperative fluorescein angiography under 3D microscope can guide the surgeon to observe the non-perfusion area and new blood vessels on the same screen for accurate retinal photocoagulation therapy.Through this technology, the primary retinal disease can be identified in time after the removal of vitreous hemorrhage during surgery, providing effective imaging evidence support for the design of further treatment.


Clinical Trial Description

With the improvement of living standards, the aging of population, the increasing incidence of chronic diseases such as hypertension and diabetes in China, the incidence of vascular retinopathy (retinal vein obstruction, diabetic retinopathy, retinal vasculitis, etc.) has also shown an increasing trend, and has become an important cause of blindness. Clinically, retinal angiofluciferin sodium angiography is mainly used to diagnose the cause of the disease. This technique has been widely used in clinic for more than 30 years, and it is safe and effective. However, its disadvantage is that patients need to have good refractive media, and the morphological changes of retinal blood vessels can be clearly observed. Vitreous hemorrhage is the most common complication of vascular retinal disease, which can be treated by vitrectomy. However, the occlusion of preoperative blood accumulation makes it impossible to effectively implement fluorescein sodium angiography, which makes doctors unable to make a comprehensive judgment of the disease in advance, which may affect the treatment plan and thus the therapeutic effect. Therefore, it is particularly important to comprehensively evaluate the primary disease of the patient's retina after removing the hematoma during the operation. In the 1980s, some scholars proposed the concept of intraoperative fluorescein angiography, but due to poor camera resolution, insufficient digital image quality and transmission delay, the application of this technology in the surgical process is limited. In recent years, the rapid development of digitally assisted vitrectomy has enabled fundus surgeons to perform vitrectomy with a high-definition 3D screen. This technique also enables full visualization of intraoperative angiography that has not been possible before, and further real-time surgery based on this information. During vitrectomy, intraoperative fluorescein angiography under 3D microscope can guide the surgeon to observe the non-perfusion area and new blood vessels on the same screen for accurate retinal photocoagulation therapy. Through this technology, the primary retinal disease can be identified in time after the removal of vitreous hemorrhage during surgery, providing effective imaging evidence support for the design of further treatment. In this study, a specific light source and filter were designed according to Zeiss intraoperative microscope. Combined with 3D microscope, the morphology and function of retinal blood vessels can be effectively observed during the operation, which has not been reported in China. Using this technology, the team successfully observed clinical features such as non-perfusion area, neovascularization, and early formation of laser spots during vitrectomy, thus contributing to accurate treatment of the disease. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT06343961
Study type Interventional
Source Sichuan Provincial People's Hospital
Contact Jie Zhong, doctor
Phone +86 13808063276
Email 676227997@qq.com
Status Not yet recruiting
Phase N/A
Start date April 18, 2024
Completion date December 2025

See also
  Status Clinical Trial Phase
Completed NCT03660371 - ILM Peeling in PDR Patients Undergoing PPV for VH N/A
Completed NCT03660345 - PPV With Internal Limiting Membrane Peeling for Treatment-Naïve DME Phase 3
Completed NCT03660384 - Silicone Oil Versus Gas in PDR Patients Undergoing Vitrectomy N/A
Completed NCT04905459 - ARDA Software for the Detection of mtmDR
Active, not recruiting NCT04271709 - Manhattan Vision Screening and Follow-Up Study (NYC-SIGHT) N/A
Recruiting NCT03713268 - Intraoperative OCT Guidance of Intraocular Surgery II
Completed NCT05022615 - Comparing 3 Imaging Systems
Completed NCT00385333 - Metabolic Mapping to Measure Retinal Metabolism Phase 2
Recruiting NCT04101604 - Biomarkers of Common Eye Diseases
Completed NCT03702374 - Combined Antioxidant Therapy on Oxidative Stress, Mitochondrial Dysfunction Markers in Diabetic Retinopathy Phase 3
Completed NCT01908816 - An Open-label Extended Clinical Protocol of Ranibizumab to Evaluate Safety and Efficacy in Rare VEGF Driven Ocular Diseases. Phase 3
Completed NCT04009980 - Long-term Retinal Changes After Topical Citicoline Administration in Patients With Mild Signs of Diabetic Retinopathy in Type 1 Diabetes Mellitus. N/A
Completed NCT02924311 - Routine Clinical Practice for Use of Intravitreal Aflibercept Treatment in Patients With Diabetic Macular Edema
Not yet recruiting NCT06257082 - Video-based Patient Education Intervention for Diabetic Eye Screening in Latinx Communities N/A
Not yet recruiting NCT05452993 - Screening for Diabetic Retinopathy in Pharmacies With Artificial Intelligence Enhanced Retinophotography N/A
Withdrawn NCT02812030 - Aflibercept for Retinopathy in the Real World N/A
Completed NCT02391558 - Clinical Evaluation of Noninvasive OCT Angiography Using a Zeiss OCT Prototype to Compare to Fluorescein Angiography N/A
Active, not recruiting NCT02353923 - OcuStem Nutritional Supplement in Diabetic Patients With Mild to Moderate Non-proliferative Retinopathy N/A
Active, not recruiting NCT02330042 - OCT Biomarkers for Diabetic Retinopathy
Completed NCT02390245 - Philadelphia Telemedicine Glaucoma Detection and Follow-Up Study N/A