Diabetic Retinopathy Clinical Trial
— PROPEROfficial title:
Macular Perfusion Changes in Proliferative Diabetic Retinopathy Following Anti-VEGF Therapy Versus Targeted and Pan-retinal Photocoagulation Using Optical Coherence Tomography Angiography
Verified date | January 2024 |
Source | Cairo University |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
Diabetic retinopathy (DR) is the most common microvascular complication of diabetes mellitus (DM), while proliferative diabetic retinopathy (PDR) is the principal cause of severe visual loss in patients with diabetes. Since 1981, Panretinal photocoagulation (PRP) has been a standard of treatment for PDR. However, PRP can be associated with adverse effects, including visual field constriction, decreased night vision, and worsening of coexisting diabetic macular edema (DME). For this reason, some authors have advocated targeted treatment with PRP. Targeted retinal laser photocoagulation (TRP) is designed to treat areas of retinal capillary non-perfusion and intermediate retinal ischemic zones in PDR that may spare better-perfused tissue from laser-induced tissue scarring. Protocol S by Diabetic Retinopathy Clinical Research Network (DRCR.net) has shown that patients that receive ranibizumab as anti-vascular endothelial growth factor (anti-VEGF) therapy with deferred PRP are non-inferior regarding improving in visual acuity to those eyes receiving standard prompt PRP therapy for the treatment of PDR. Retinal ischemia is an important factor in the progression and prognosis of diabetic retinopathy. Regarding the effect of anti-VEGF drugs on macular perfusion, several studies have shown mixed results with an increase, decrease, or no effect on perfusion in response to anti-VEGF treatment. In many of these studies, however, patients with more ischemic retinas were not included. Fluorescein angiography (FA) was the method used to assess changes in macular perfusion after anti-VEGF injections in most of the clinical trials. Despite its clinical usefulness, however, FA is known to have documented risks. Optical coherence tomography angiography (OCTA) in macular perfusion evaluation in these cases was recommended by some investigators. Several studies have proved the reliability of OCTA in detecting and quantifying macular ischemia in diabetics. The investigators aim to compare changes in the macular perfusion in patients with PDR after treatment with anti-VEGF therapy versus TRP versus Standard PRP using OCTA.
Status | Completed |
Enrollment | 43 |
Est. completion date | March 15, 2023 |
Est. primary completion date | March 15, 2023 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years and older |
Eligibility | Inclusion Criteria: 1. Patients = 18 years old 2. Type 1 or 2 diabetes mellitus 3. PDR 4. Central macular thickness less than 300 µm Exclusion Criteria: 1. Central macular thickness more than 300 µm 2. Previous retinal laser treatment 3. Ocular conditions that may affect macular perfusion (e.g. retinal vein occlusion, uveitis, vasculitis etc.) 4. Any previous treatment for diabetic macular edema. 5. Presence of epiretinal membrane involving the macula or vitreomacular traction 6. Media opacity such vitreous hemorrhage and dense cataract. 7. Patients with previous cataract surgery within the last 3 months. 8. Uncontrolled glaucoma 9. Thromboembolic events within 6 months 10. Tractional retinal detachment. |
Country | Name | City | State |
---|---|---|---|
Egypt | Faculty of Medicine, Cairo University | Giza |
Lead Sponsor | Collaborator |
---|---|
Cairo University |
Egypt,
Alagorie AR, Nittala MG, Velaga S, Zhou B, Rusakevich AM, Wykoff CC, Sadda SR. Association of Intravitreal Aflibercept With Optical Coherence Tomography Angiography Vessel Density in Patients With Proliferative Diabetic Retinopathy: A Secondary Analysis o — View Citation
Bradley PD, Sim DA, Keane PA, Cardoso J, Agrawal R, Tufail A, Egan CA. The Evaluation of Diabetic Macular Ischemia Using Optical Coherence Tomography Angiography. Invest Ophthalmol Vis Sci. 2016 Feb;57(2):626-31. doi: 10.1167/iovs.15-18034. — View Citation
Campochiaro PA, Wykoff CC, Shapiro H, Rubio RG, Ehrlich JS. Neutralization of vascular endothelial growth factor slows progression of retinal nonperfusion in patients with diabetic macular edema. Ophthalmology. 2014 Sep;121(9):1783-9. doi: 10.1016/j.ophth — View Citation
Elnahry AG, Abdel-Kader AA, Habib AE, Elnahry GA, Raafat KA, Elrakhawy K. Review on Recent Trials Evaluating the Effect of Intravitreal Injections of Anti-VEGF Agents on the Macular Perfusion of Diabetic Patients with Diabetic Macular Edema. Rev Recent Cl — View Citation
Elnahry AG, Abdel-Kader AA, Raafat KA, Elrakhawy K. Evaluation of Changes in Macular Perfusion Detected by Optical Coherence Tomography Angiography following 3 Intravitreal Monthly Bevacizumab Injections for Diabetic Macular Edema in the IMPACT Study. J O — View Citation
Elnahry AG, Abdel-Kader AA, Raafat KA, Elrakhawy K. Evaluation of the Effect of Repeated Intravitreal Bevacizumab Injections on the Macular Microvasculature of a Diabetic Patient Using Optical Coherence Tomography Angiography. Case Rep Ophthalmol Med. 201 — View Citation
Freiberg FJ, Pfau M, Wons J, Wirth MA, Becker MD, Michels S. Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2016 Jun;254(6):1051-8. doi: 10.1007/s00417-015-3148-2. Epub 2015 — View Citation
Ghasemi Falavarjani K, Iafe NA, Hubschman JP, Tsui I, Sadda SR, Sarraf D. Optical Coherence Tomography Angiography Analysis of the Foveal Avascular Zone and Macular Vessel Density After Anti-VEGF Therapy in Eyes With Diabetic Macular Edema and Retinal Vei — View Citation
Hsieh YT, Alam MN, Le D, Hsiao CC, Yang CH, Chao DL, Yao X. OCT Angiography Biomarkers for Predicting Visual Outcomes after Ranibizumab Treatment for Diabetic Macular Edema. Ophthalmol Retina. 2019 Oct;3(10):826-834. doi: 10.1016/j.oret.2019.04.027. Epub — View Citation
Klein R, Klein BE, Moss SE, Davis MD, DeMets DL. The Wisconsin epidemiologic study of diabetic retinopathy. IV. Diabetic macular edema. Ophthalmology. 1984 Dec;91(12):1464-74. doi: 10.1016/s0161-6420(84)34102-1. — View Citation
Kozak I, Luttrull JK. Modern retinal laser therapy. Saudi J Ophthalmol. 2015 Apr-Jun;29(2):137-46. doi: 10.1016/j.sjopt.2014.09.001. Epub 2014 Sep 28. — View Citation
Lee R, Wong TY, Sabanayagam C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis (Lond). 2015 Sep 30;2:17. doi: 10.1186/s40662-015-0026-2. eCollection 2015. — View Citation
Manousaridis K, Talks J. Macular ischaemia: a contraindication for anti-VEGF treatment in retinal vascular disease? Br J Ophthalmol. 2012 Feb;96(2):179-84. doi: 10.1136/bjophthalmol-2011-301087. — View Citation
Michaelides M, Kaines A, Hamilton RD, Fraser-Bell S, Rajendram R, Quhill F, Boos CJ, Xing W, Egan C, Peto T, Bunce C, Leslie RD, Hykin PG. A prospective randomized trial of intravitreal bevacizumab or laser therapy in the management of diabetic macular ed — View Citation
Muqit MM, Marcellino GR, Henson DB, Young LB, Patton N, Charles SJ, Turner GS, Stanga PE. Optos-guided pattern scan laser (Pascal)-targeted retinal photocoagulation in proliferative diabetic retinopathy. Acta Ophthalmol. 2013 May;91(3):251-8. doi: 10.1111 — View Citation
Nguyen QD, Brown DM, Marcus DM, Boyer DS, Patel S, Feiner L, Gibson A, Sy J, Rundle AC, Hopkins JJ, Rubio RG, Ehrlich JS; RISE and RIDE Research Group. Ranibizumab for diabetic macular edema: results from 2 phase III randomized trials: RISE and RIDE. Opht — View Citation
Nikkhah H, Ghazi H, Razzaghi MR, Karimi S, Ramezani A, Soheilian M. Extended targeted retinal photocoagulation versus conventional pan-retinal photocoagulation for proliferative diabetic retinopathy in a randomized clinical trial. Int Ophthalmol. 2018 Feb — View Citation
Riaskoff S. Photocoagulation treatment of proliferative diabetic retinopathy. Bull Soc Belge Ophtalmol. 1981;197:9-17. No abstract available. — View Citation
Wessel MM, Aaker GD, Parlitsis G, Cho M, D'Amico DJ, Kiss S. Ultra-wide-field angiography improves the detection and classification of diabetic retinopathy. Retina. 2012 Apr;32(4):785-91. doi: 10.1097/IAE.0b013e3182278b64. — View Citation
Writing Committee for the Diabetic Retinopathy Clinical Research Network; Gross JG, Glassman AR, Jampol LM, Inusah S, Aiello LP, Antoszyk AN, Baker CW, Berger BB, Bressler NM, Browning D, Elman MJ, Ferris FL 3rd, Friedman SM, Marcus DM, Melia M, Stockdale — View Citation
Yannuzzi LA, Rohrer KT, Tindel LJ, Sobel RS, Costanza MA, Shields W, Zang E. Fluorescein angiography complication survey. Ophthalmology. 1986 May;93(5):611-7. doi: 10.1016/s0161-6420(86)33697-2. — View Citation
* Note: There are 21 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Change in foveal avascular zone area | The change in the foveal avascular zone area will be compared between the different treatment arms as a measure of macular perfusion change. | 0, 3, 6, 9, and 12 months | |
Primary | Change in vascular density of the retinal capillary plexuses | The change in retinal capillary vascular densities at different capillary layers will be compared between the different treatment arms as a measure of macular perfusion change. | 0, 3, 6, 9, and 12 months | |
Secondary | Change in neovessels | The change in neovessels following treatment with each modality will be evaluated clinically and by fundus fluorescein angiography and the response to treatment will be classified according to the criteria of protocol S of the DRCR network | 0, 3, 6, 9, and 12 months | |
Secondary | Change in central macular thickness | The change in central macular thickness will be evaluated following treatment with each modality using optical coherence tomography. | 0, 3, 6, 9, and 12 months | |
Secondary | Change in best corrected visual acuity | The change in best corrected visual acuity will be assessed following treatment with each modality using standard Snellen charts. | 0, 3, 6, 9, and 12 months | |
Secondary | Change in macular sensitivity | The change in the macular sensitivity will be assessed following treatment with each modality using macular microperimetry. | 0, 3, 6, 9, and 12 months | |
Secondary | Change in orbital blood flow | The change in orbital blood flow will be assessed following treatment with each modality using orbital color duplex imaging. | 0, 3, 6, 9, and 12 months |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT03660384 -
Silicone Oil Versus Gas in PDR Patients Undergoing Vitrectomy
|
N/A | |
Completed |
NCT03660371 -
ILM Peeling in PDR Patients Undergoing PPV for VH
|
N/A | |
Completed |
NCT03660345 -
PPV With Internal Limiting Membrane Peeling for Treatment-Naïve DME
|
Phase 3 | |
Completed |
NCT04905459 -
ARDA Software for the Detection of mtmDR
|
||
Active, not recruiting |
NCT04271709 -
Manhattan Vision Screening and Follow-Up Study (NYC-SIGHT)
|
N/A | |
Recruiting |
NCT03713268 -
Intraoperative OCT Guidance of Intraocular Surgery II
|
||
Completed |
NCT05022615 -
Comparing 3 Imaging Systems
|
||
Completed |
NCT00385333 -
Metabolic Mapping to Measure Retinal Metabolism
|
Phase 2 | |
Recruiting |
NCT04101604 -
Biomarkers of Common Eye Diseases
|
||
Completed |
NCT03702374 -
Combined Antioxidant Therapy on Oxidative Stress, Mitochondrial Dysfunction Markers in Diabetic Retinopathy
|
Phase 3 | |
Completed |
NCT01908816 -
An Open-label Extended Clinical Protocol of Ranibizumab to Evaluate Safety and Efficacy in Rare VEGF Driven Ocular Diseases.
|
Phase 3 | |
Completed |
NCT04009980 -
Long-term Retinal Changes After Topical Citicoline Administration in Patients With Mild Signs of Diabetic Retinopathy in Type 1 Diabetes Mellitus.
|
N/A | |
Completed |
NCT02924311 -
Routine Clinical Practice for Use of Intravitreal Aflibercept Treatment in Patients With Diabetic Macular Edema
|
||
Not yet recruiting |
NCT06257082 -
Video-based Patient Education Intervention for Diabetic Eye Screening in Latinx Communities
|
N/A | |
Not yet recruiting |
NCT05452993 -
Screening for Diabetic Retinopathy in Pharmacies With Artificial Intelligence Enhanced Retinophotography
|
N/A | |
Withdrawn |
NCT02812030 -
Aflibercept for Retinopathy in the Real World
|
N/A | |
Completed |
NCT02391558 -
Clinical Evaluation of Noninvasive OCT Angiography Using a Zeiss OCT Prototype to Compare to Fluorescein Angiography
|
N/A | |
Active, not recruiting |
NCT02330042 -
OCT Biomarkers for Diabetic Retinopathy
|
||
Active, not recruiting |
NCT02353923 -
OcuStem Nutritional Supplement in Diabetic Patients With Mild to Moderate Non-proliferative Retinopathy
|
N/A | |
Completed |
NCT02390245 -
Philadelphia Telemedicine Glaucoma Detection and Follow-Up Study
|
N/A |