Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT02986984
Other study ID # 824503
Secondary ID
Status Recruiting
Phase
First received
Last updated
Start date December 2016
Est. completion date June 2025

Study information

Verified date January 2024
Source University of Pennsylvania
Contact Raymond R Townsend, MD
Phone 267-738-3431
Email townsend@upenn.edu
Is FDA regulated No
Health authority
Study type Observational

Clinical Trial Summary

This is a prospective, observational, cohort study of patients with a clinical diagnosis of diabetes who are undergoing clinically indicated kidney biopsy. The intent is to collect, process, and study kidney tissue and to harvest blood, urine and genetic materials to elucidate molecular pathways and link them to biomarkers that characterize those patients have a rapid decline in kidney function (> 5 mL/min/1.73m2/year) from those with lesser degrees of kidney function change over the period of observation. High through-put genomic analysis associated with genetic and biomarker testing will serve to identify key potential therapeutic targets for DKD by comparing patients with rapid and slow progression patterns. Each participating clinical site will search for, consent, harvest the biopsy sample, and enroll the participants as required for the TRIDENT protocol.


Description:

Progress in the area of diabetic kidney research leading to new therapeutics development has been very limited. Indeed, no new medicines indicated for the treatment of chronic kidney disease (CKD) have been approved since ARB's have become standard of care nearly 15 years ago. Several factors explain the limited progress including but not limited to; a) animal and cell culture models do not recapitulate human DKD b) human genetic studies so far have failed to identify reproducible genetic variants associated with DKD c) the clinical manifestation of DKD is heterogeneous and might have even changed since the original description d) DKD is a clinical diagnosis and it is not clear what percentage of patients have histological disease. Laboratory mice have served as invaluable tools to understand human disease development. As mouse genetic tools became readily available, it enabled us to perform time and cell type specific gene manipulation in animals to generate disease models and to understand the contributions of specific pathways. Unfortunately, mouse models do not recapitulate human diabetic kidney disease as animals develop only early DKD lesions; mesangial expansion and mild albuminuria11. Most models do not develop arterial hyalinosis, tubulointerstitial fibrosis and declining glomerular filtration rate (GFR); hallmarks of progressive DKD. There are several fundamental differences in gene expression patterns and physiology of human and murine kidneys. Such differences may explain the lack of translatability between mice and humans of pharmacological approaches aimed at treating DKD. This seems to be a general trend in other disease areas as well (for example Alzheimer's disease), leading to a recent movement toward translational and clinical research with increasing reliance on human samples. Human genetic studies made paradigm-shifting observations in relatively rare monogenic forms of kidney diseases (including polycystic kidney disease and focal segmental glomerulosclerosis). Diabetic CKD on the other hand follows a complex polygenic pattern. Currently, the most powerful method to define the genetics of complex diseases such as DKD is genome wide association (GWAS), where associations between polymorphisms and the disease state are tested. Prior studies indicate that for complex traits, such as DKD, genetic polymorphisms that are associated with disease state are localized to the non-coding region of the genome12,13. Moreover, the genetic architecture of diabetic kidney disease has not been characterized and several large collaborations are currently addressing this issue14. Thus, the next challenge is to define target genes, target cell types and the mode of dysregulation caused by non-coding snips (SNPs15). Such studies require large collection of human tissue samples from disease relevant organs. Diabetic kidney disease (DKD) remains a clinical diagnosis. Subjects with CKD in the presence of diabetes and albuminuria are considered to have diabetic nephropathy. Such definition is used in clinical practice and in research studies including clinical trials. Studies performed in 1980 provide the basis for the practice16,17. Investigators stage DKD as a progressive disease, beginning with the loss of small amounts of albumin into the urine (30-300mg/day; known as the stage of microalbuminuria, high albuminuria, occult or incipient nephropathy), then larger amounts (>300mg/day; known as macroalbuminuria, very high albuminuria or overt nephropathy), followed by progressive decline in kidney function (eGFR), renal impairment and ultimately ESRD 17-19. This paradigm has proved useful in clinical studies, especially in type 1 diabetes, for identifying cohorts at increased risk of adverse health outcomes. However, boundaries between stages of DKD are artificial and the relationship between urinary albumin excretion and adverse health outcomes is log-linear in clinical practice. Indeed, the American Diabetes Association recently abandoned staging of albuminuria (ACR) for a more-straightforward [ACR >30 mg/g, (albuminuria present); ACR <30 mg/g (albuminuria absent)] criterion. Moreover, many patients, and especially those with type 2 diabetes, do not follow this classical course in modern clinical practice. For example, many subjects with DKD do not manifest excessive urinary albumin loss20. Indeed, of the 28% of the UKPDS cohort who developed moderate to severe renal impairment, half did not have preceding albuminuria. In the Diabetes Control and Complications Trial (DCCT), of the 11% patients with type 1 diabetes who developed an eGFR<60 ml/min/1.73m2, 40% never had experienced overt nephropathy21. In addition, most patients with microalbuminuria do not progressively exhibit an increase in urinary albumin excretion as in the classical paradigm with treatment-induced and spontaneous 'remission' of albuminuria widely observed22,23. Consequently, individuals with microalbuminuria may better be regarded as being at increased risk of developing progressive renal disease (as well as cardiovascular disease and other diabetic complications), rather than as actually having DKD per se. While over the last 40 years it became evident that the original description of DKD needs revision, no alternative criteria have emerged given the lack of solid data on the correlation between histopathological (gold standard) DKD diagnosis and clinical manifestations. It is also possible that, with the introduction of better glycemic control and anti-renin (RAAS) blockade, the disease has evolved necessitating new observational cohorts to understand the clinical disease course and manifestations. Diabetic kidney disease presents with a variable rate of kidney function decline24. Data from large observational cohorts indicate that GFR decline frequently does not follow a linear course. Several groups are working on modeling GFR decline patterns in patients. Such studies contributed to emphasizing patients termed as "rapid progressors". There is no consensus definition for rapid progression. Many studies define rapid progressors as patients with greater than 3 cc/year GFR decrease but alternative cut points such as even 10 cc/year has also been used. Identification and clinical characterization of rapid progressors became the center of several large scale efforts as these are the patients who would likely need intensive clinical management25. Furthermore recent post-hoc analyses of the Diabetic Nephropathy (IDNT and RENAAL) studies indicate that clinical trial outcomes are mostly driven by a small number of subjects with unusually rapidly progressive GFR decline i.e. subjects that display characteristics of rapid progressors. While investigators are still awaiting accurate descriptions, biomarker and clinical descriptive studies have yielded several interesting observations. Albuminuria remains one of the strongest risk factor for "FDA-approved" (hard) renal outcomes; doubling of serum creatinine, dialysis or death. Indeed some of the latest studies indicate that using a 4 or a 6 variable model, that includes albuminuria, age, sex, serum phosphate, serum calcium and serum albumin has C-statistics score of 0.84-0.91 to predict ESRD 26,27. During the last years several new biomarkers have been identified that can potentially identify patients who are at increased risk for rapid loss of kidney function. For example blood and urinary levels of kidney injury molecule (KIM1) shows promise to identify patients who are at risk for kidney function decline. Recently, investigators showed that circulating levels of tumor necrosis factor receptor 1 and 2 levels can identify patients with rapidly declining renal function 28. While these markers are generating increased interest; the critical questions remains; why do some patients follow a rapid decline in kidney function?


Recruitment information / eligibility

Status Recruiting
Enrollment 400
Est. completion date June 2025
Est. primary completion date December 2024
Accepts healthy volunteers No
Gender All
Age group 18 Years to 100 Years
Eligibility Inclusion Criteria: - Type 1 and 2 Diabetes by American Diabetes Association (ADA) criteria - Willingness to comply with study requirements, including intention to fully participate in protocol-specified follow-up at a clinical study site - Able to provide informed consent - Adult participants - Planned medically indicated kidney biopsy, prescribed by a practicing nephrologist Exclusion Criteria: - End Stage Renal Disease (ESRD), defined as chronic dialysis or kidney transplant - History of receiving dialysis for more than 30 days prior to biopsy - Institutionalized - Solid organ or bone marrow transplant recipient at time of first kidney biopsy - Less than 3-year life expectancy - History of active alcohol and/or substance abuse that in the investigator's assessment would impair the subject's ability to comply with the protocol - Unable to provide informed consent - Evidence of active cancer requiring treatment, other than non-melanoma skin cancer

Study Design


Intervention

Other:
There is no intervention
There are no interventions

Locations

Country Name City State
United States University of New Mexico Albuquerque New Mexico
United States Lehigh Valley Health Network Allentown Pennsylvania
United States University of Michigan Ann Arbor Michigan
United States Albert Einstein College of Medicine Bronx New York
United States University of North Carolina Chapel Hill North Carolina
United States University of Virginia Charlottesville Virginia
United States Northwestern University Chicago Illinois
United States Ohio State University Columbus Ohio
United States University of Arkansas for Medical Sciences Little Rock Arkansas
United States University of Southern California Los Angeles California
United States Yale University New Haven Connecticut
United States Columbia University New York New York
United States Mount Sinai Hospital New York New York
United States Stanford University Palo Alto California
United States University of Pennsylvania Philadelphia Pennsylvania
United States Oregon Health & Science University Portland Oregon
United States University of Texas Health Science Center at San Antonio San Antonio Texas

Sponsors (21)

Lead Sponsor Collaborator
University of Pennsylvania Albert Einstein College of Medicine, Boehringer Ingelheim, Gilead Sciences, GlaxoSmithKline, Juvenile Diabetes Research Foundation, Lehigh Valley Health Network, MOUNT SINAI HOSPITAL, Northwestern University, Novo Nordisk A/S, Ohio State University, Oregon Health and Science University, Regeneron Pharmaceuticals, Stanford University, The University of Texas Health Science Center at San Antonio, University of Arkansas, University of New Mexico, University of North Carolina, University of Southern California, University of Virginia, Yale University

Country where clinical trial is conducted

United States, 

References & Publications (4)

Abedini A, Zhu YO, Chatterjee S, Halasz G, Devalaraja-Narashimha K, Shrestha R, S Balzer M, Park J, Zhou T, Ma Z, Sullivan KM, Hu H, Sheng X, Liu H, Wei Y, Boustany-Kari CM, Patel U, Almaani S, Palmer M, Townsend R, Blady S, Hogan J, Morton L, Susztak K; — View Citation

Hogan JJ, Owen JG, Blady SJ, Almaani S, Avasare RS, Bansal S, Lenz O, Luciano RL, Parikh SV, Ross MJ, Sharma D, Szerlip H, Wadhwani S, Townsend RR, Palmer MB, Susztak K, Mottl AK; TRIDENT Study Investigators. The Feasibility and Safety of Obtaining Resear — View Citation

Palmer MB, Abedini A, Jackson C, Blady S, Chatterjee S, Sullivan KM, Townsend RR, Brodbeck J, Almaani S, Srivastava A, Avasare R, Ross MJ, Mottl AK, Argyropoulos C, Hogan J, Susztak K. The Role of Glomerular Epithelial Injury in Kidney Function Decline in — View Citation

Townsend RR, Guarnieri P, Argyropoulos C, Blady S, Boustany-Kari CM, Devalaraja-Narashimha K, Morton L, Mottl AK, Patel U, Palmer M, Ross MJ, Sarov-Blat L, Steinbugler K, Susztak K; TRIDENT Study Investigators. Rationale and design of the Transformative Research in Diabetic Nephropathy (TRIDENT) Study. Kidney Int. 2020 Jan;97(1):10-13. doi: 10.1016/j.kint.2019.09.020. No abstract available. Erratum In: Kidney Int. 2020 Apr;97(4):809. — View Citation

Outcome

Type Measure Description Time frame Safety issue
Primary Rapid progression of kidney function loss • Identification of epigenetic, genetic, renal, genomic, and biomarker profiles that differentiates patients with rapid GFR decline (>5cc/min) from those with slower (<5cc/min) rate of progression. up to three years
Secondary Serious Adverse Events Prolonged hospitalization or need for intervention after kidney biopsy up to three years
See also
  Status Clinical Trial Phase
Enrolling by invitation NCT05530356 - Renal Hemodynamics, Energetics and Insulin Resistance: A Follow-up Study
Terminated NCT01575379 - A Pilot Study of Allopurinol to Prevent Kidney Function Loss in Type 1 Diabetes Phase 4
Active, not recruiting NCT05656963 - The Influencing Factors and Mechanism of High Incidence of Thrombotic Events in Patients With MN and DKD
Not yet recruiting NCT04084886 - TCF7L2 Gene Polymorphism and AGEs in Diabetic Nephropathy
Active, not recruiting NCT04869761 - Stem Cell Therapy for Chronic Kidney Disease Phase 1
Recruiting NCT04570735 - MRI Biomarkers in Diabetic Kidney Disease
Completed NCT03165240 - This International Study Tests BI 690517 in Patients With Diabetic Kidney Disease. The Study Tests How 3 Different Doses of BI 690517 Are Taken up in the Body and How Well They Are Tolerated Phase 1
Completed NCT01968668 - Safety and Efficacy of Different Oral Doses of BAY94-8862 in Japanese Subjects With Type 2 Diabetes Mellitus and the Clinical Diagnosis of Diabetic Nephropathy (ARTS-DN Japan) Phase 2
Completed NCT02552277 - A Efficacy and Safety Study of Intramuscular Injection of Human Placenta-Derived Cells (PDA-002) in Subjects With Diabetic Peripheral Neuropathy Phase 2
Terminated NCT03840343 - Patient-Derived Stem Cell Therapy for Diabetic Kidney Disease Phase 1
Terminated NCT02410005 - Intervention Using Vitamin D for Elevated Urinary Albumin Treated With Losartan in Diabetes (IDEAL) Phase 2/Phase 3
Unknown status NCT01918488 - Increased Activity of a Renal Salt Transporter (ENaC) in Diabetic Kidney Disease N/A
Completed NCT00915200 - N-Acetylcysteine and Milk Thistle for Treatment of Diabetic Nephropathy Phase 2
Completed NCT03165227 - This Study Tests a New Medicine Called BI 685509 in Patients That Have Kidney Problems Because of Diabetes. The Study Tests How BI 685509 is Taken up in the Body and How Well it is Tolerated (Multiple Rising Doses) Phase 1
Active, not recruiting NCT04531163 - Possible Ameliorating Effect of N- Acetylcysteine (NAC) on Type-II Diabetes Induced Nephropathy Phase 2/Phase 3
Active, not recruiting NCT03620773 - Impact of Metabolic Surgery on Pancreatic, Renal and Cardiovascular Health in Youth With Type 2 Diabetes Phase 1/Phase 2
Completed NCT03618420 - Copeptin in Adolescent Participants With Type 1 Diabetes and Early Renal Hemodynamic Function Phase 1/Phase 2
Completed NCT03334318 - PERL Continuous Glucose Monitoring (CGM) Study
Not yet recruiting NCT03284996 - Doppler Ultrasound in Early Detection of Diabetic Nephropathy Type 2 Diabetes Mellitus. N/A
Completed NCT04380584 - Relation Between Plasma Apelin Level and Diabetic Nephropathy in Type 2 Diabetes Patients.