Deep Learning Clinical Trial
Official title:
Development and Validation of Deep Neural Networks for Blinking Identification and Classification
Primary objective of this study is the development and validation of a system of deep neural networks which automatically detects and classifies blinks as "complete" or "incomplete" in image sequences.
This method is based on iris and sclera segmentation in both eyes from the acquired images, using state of the art deep learning encoder-decoder neural architectures (DLED). The sequence of the segmented frames is post-processed to calculate the distance between the eyelids of each eye (palpebral fissure) and the corresponding iris diameter. Theses quantities are temporally filtered and their fraction is subject to adaptive thresholding to identify blinks and determine their type, independently for each eye. The two DLEDs were trained with manually segmented images and the post-process was parameterized using a 4-minute video. After DLED training, the proposed system was tested on 8 different subjects, each one with a 4-10-minute video. Several metrics of blink detection and classification accuracy were calculated against the ground truth, which was generated by 3 independent experts, whose conflicts were resolved by a senior expert. Two independent blink identifications are assumed to be in agreement, if and only if there is sufficient temporal overlapping and the type of blink is the same between the DLED system and the ground truth. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Not yet recruiting |
NCT05550012 -
A New Deep-learning Based Artificial Intelligence Iterative Reconstruction (AIIR) Algorithm in Low-dose Liver CT
|
N/A | |
Completed |
NCT04921488 -
Interest of Artificial Intelligence in Cancer Screening Colonoscopy
|
N/A | |
Completed |
NCT06274502 -
Automated Detection and Diagnosis of Pathological DRGs in PHN Patients Using Deep Learning and Magnetic Resonance
|
||
Recruiting |
NCT05046366 -
Development of an Artificial Intelligence System for Intelligent Pathological Diagnosis and Therapeutic Effect Prediction Based on Multimodal Data Fusion of Common Tumors and Major Infectious Diseases in the Respiratory System Using Deep Learning Technology.
|
||
Recruiting |
NCT04824378 -
Study on Classification Method of Indocyanine Green Lymphography Based on Deep Learning
|
||
Recruiting |
NCT04592068 -
AI Classifies Multi-Retinal Diseases
|
||
Recruiting |
NCT05058599 -
Reconstruction Technology to Auxiliary Diagnosis and Guarantee Patient Privacy
|
||
Recruiting |
NCT05536024 -
Combing a Deep Learning-Based Radiomics With Liquid Biopsy for Preoperative and Non-invasive Diagnosis of Glioma
|
||
Completed |
NCT05323279 -
Evaluate the Effects of An AI System on Colonoscopy Quality of Novice Endoscopists
|
N/A | |
Completed |
NCT06278272 -
AI Evaluation of Pancreatic Exocrine Insufficiency in CP Patients
|
||
Not yet recruiting |
NCT06462924 -
Feasibility of Gadolinium Contrast Reduced Brain MRI: the Potential of Deep Learning
|
N/A | |
Enrolling by invitation |
NCT06444425 -
Artificial Intelligence in Detecting Cardiac Function
|
||
Recruiting |
NCT06372756 -
Deep Learning Reconstruction Algorithms in Dual Low-dose CTA
|
||
Recruiting |
NCT05426135 -
Artificial Intelligence System for Assessment of Tumor Risk and Diagnosis and Treatment
|
||
Recruiting |
NCT05444166 -
Explore the Relationship Between the Percentage of Colonoscopy Withdrawal Overspeed and the ADR
|
||
Recruiting |
NCT05617469 -
DLCS for Predicting Neoadjuvant Chemotherapy Response
|
||
Active, not recruiting |
NCT05182099 -
High Resolution HBA-MRI Using Deep Learning Reconstruction
|
N/A | |
Recruiting |
NCT05204186 -
Impact of COMORBIDities After Radical Cystectomy Using a Predictive Method With Artificial Intelligence
|
||
Recruiting |
NCT06383546 -
Artificial Intelligence-enabled ECG Detection of Congenital Heart Disease in Children: a Novel Diagnostic Tool
|
||
Active, not recruiting |
NCT05041777 -
Optical-Coherence Tomography for the Non-invasive Diagnosis and Subtyping of Basal Cell Carcinoma
|