Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT06201754
Other study ID # IIT20230456B
Secondary ID
Status Recruiting
Phase
First received
Last updated
Start date January 2, 2024
Est. completion date December 1, 2024

Study information

Verified date February 2024
Source First Affiliated Hospital of Zhejiang University
Contact Lingtong Huang
Phone 057187216733
Email lingtonghuang@zju.edu.cn
Is FDA regulated No
Health authority
Study type Observational

Clinical Trial Summary

There is a close relationship between air pollution and cardiovascular disease. Small particulate matter and inhalable particulate matter in the air are the main components of air pollution, which can enter the respiratory system and enter the bloodstream through alveoli. These particles are believed to have the ability to trigger inflammatory responses, which are one of the important factors leading to cardiovascular disease. Some studies suggest that air pollution may increase the risk of cardiac events, such as arrhythmia and myocardial infarction, by affecting the autonomic function of the heart. Air pollution in the ICU may have a series of adverse effects on critically ill patients, especially those with underlying heart disease or elderly patients, but there is no relevant research to confirm this.


Description:

Hospital acquired infections, also known as hospital acquired infections or healthcare related infections, refer to infections caused by activities related to treatment, diagnosis, or rehabilitation in the process of receiving medical services. Hospital acquired infections (HAIs) are a major global issue, and treatment may be costly. In the UK, it is estimated that as of 2017, the cost of HAIs could reach £ 1 billion per year, and hospital environments are considered to account for approximately 20% of all HAIs in terms of affecting the survival and transmission of pathogens in the environment. The hospital environment is influenced by workplace design and layout, operation and maintenance, as well as various interactions between the environment and people. Research on environmental microbial pollution indicates that various factors, including indoor air quality parameters (such as temperature, relative humidity, and ventilation), staff activities, patient conditions and visitor numbers, as well as surface types, may affect the presence of microorganisms. A very small amount of research associates virus concentration with these factors. The surfaces, air, and indoor structures including ventilation systems have been proven to serve as reservoirs for pathogens, and in some cases, these pathogens can survive for several months in hospital environments. Previous studies have utilized environmental sampling information to correlate air biomass levels, surface biomass, and HAIs incidence. Sampling of microorganisms in the air can be used to evaluate the concentration of microorganisms present in the hospital environment. Most studies use culture based methods to evaluate active microorganisms, and the microbial load in the air can be quantified using active or passive sampling methods. The indoor air quality (IAQ) parameters in hospitals, including temperature, relative humidity, CO2 level (reflecting ventilation rate), particulate matter concentration, and particle size, are crucial for ensuring personnel health and may also affect the biological load in the environment. In indoor environments, temperature and relative humidity are the most commonly monitored indicators. However, these two parameters are associated with the survival of microorganisms, with humidity being a particularly noteworthy factor as many bacteria and fungi prefer humid environments. There is evidence to suggest that the survival rate of the virus increases when the relative humidity is below 40% RH. Although there are differences in guidance around the world, it is generally recommended to maintain room temperature between 16-25 ° C and humidity within the range of 40-60% RH. CO2 is related to the exhaled breath of relevant personnel and is often measured as an indicator of ventilation levels. Many studies have also shown that ventilation rates reflected by CO2 concentration can be used to assess the risk of airborne infections. The particulate matter in the air provides a general measure of indoor air quality (IAQ), which is related to indoor sources, activities, or outdoor conditions. Some studies suggest using particulate matter in the air as a monitoring indicator to measure air cleanliness, even when using ventilation systems in professional hospitals. The comprehensive consideration of these IAQ parameters can provide a more comprehensive understanding of the internal environmental conditions of the hospital, thereby helping to maintain the health and safety of patients and staff. There is a close relationship between air pollution and cardiovascular disease. For a long time, scientific research has confirmed the adverse effects of air pollution on cardiovascular health. Small particulate matter (PM2.5) and inhalable particulate matter (PM10) in the air are the main components of air pollution, which can enter the respiratory system and enter the bloodstream through alveoli. These particles are believed to have the ability to trigger inflammatory responses, which are one of the important factors leading to cardiovascular disease. Some studies suggest that air pollution may increase the risk of cardiac events, such as arrhythmia and myocardial infarction, by affecting the autonomic function of the heart. Air pollution in the ICU may have a series of adverse effects on critically ill patients, especially those with underlying heart disease or elderly patients, but there is no relevant research to confirm this.


Recruitment information / eligibility

Status Recruiting
Enrollment 600
Est. completion date December 1, 2024
Est. primary completion date June 1, 2024
Accepts healthy volunteers
Gender All
Age group 18 Years and older
Eligibility Inclusion Criteria: 1. Age greater than 18 years old 2. The subject or their family members fully understand the patient's instructions and sign an informed consent form Exclusion Criteria: 1. Expected ICU hospitalization days are less than 2 days 2. Pregnant women

Study Design


Related Conditions & MeSH terms


Intervention

Other:
Measure air quality
Measure air quality, including PM2.5?PM10

Locations

Country Name City State
China First Affiliated Hospital of Zhejiang University School of Medicine Hangzhou Zhejiang
China The First People's Hospital of Pinghu Pinghu
China Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University Taizhou

Sponsors (1)

Lead Sponsor Collaborator
First Affiliated Hospital of Zhejiang University

Country where clinical trial is conducted

China, 

Outcome

Type Measure Description Time frame Safety issue
Primary PM2.5 exposures and hospital acquired infections The correlation between the total amount or number of PM2.5 exposures (area under the curve and greater than 5ug/m3) and hospital acquired infections after admission to the ICU six month
Secondary Air quality indicators and arrhythmias Correlation between air quality indicators (PM2.5, PM10) and newly diagnosed arrhythmias six month
Secondary Medical operations and air quality indicators Correlation between medical operations and air quality indicators (PM2.5, PM10) six month
Secondary PM10, CO2 and hospital acquired infections Correlation between PM10 and hospital acquired infections six month
Secondary Air quality indicators and mechanical ventilation Correlation between air quality indicators (PM2.5, PM10) and mechanical ventilation six month
Secondary Air quality indicators and the use of vasoactive drugs Correlation between air quality indicators (PM2.5, PM10) and the use of vasoactive drugs six month
Secondary Air quality indicators and ventilator-associated pneumonia Correlation between air quality indicators (PM2.5, PM10) and incidence rate of ventilator-associated pneumonia six month
Secondary Air quality indicators and incidence rate of CRBSI Correlation between air quality indicators (PM2.5, PM10) and incidence rate of CRBSI six month
See also
  Status Clinical Trial Phase
Completed NCT04551508 - Delirium Screening 3 Methods Study
Recruiting NCT06037928 - Plasma Sodium and Sodium Administration in the ICU
Completed NCT03671447 - Enhanced Recovery After Intensive Care (ERIC) N/A
Recruiting NCT03941002 - Continuous Evaluation of Diaphragm Function N/A
Recruiting NCT04674657 - Does Extra-Corporeal Membrane Oxygenation Alter Antiinfectives Therapy Pharmacokinetics in Critically Ill Patients
Completed NCT04239209 - Effect of Intensivist Communication on Surrogate Prognosis Interpretation N/A
Completed NCT05531305 - Longitudinal Changes in Muscle Mass After Intensive Care N/A
Terminated NCT03335124 - The Effect of Vitamin C, Thiamine and Hydrocortisone on Clinical Course and Outcome in Patients With Severe Sepsis and Septic Shock Phase 4
Completed NCT02916004 - The Use of Nociception Flexion Reflex and Pupillary Dilatation Reflex in ICU Patients. N/A
Recruiting NCT05883137 - High-flow Nasal Oxygenation for Apnoeic Oxygenation During Intubation of the Critically Ill
Completed NCT04479254 - The Impact of IC-Guided Feeding Protocol on Clinical Outcomes in Critically Ill Patients (The IC-Study) N/A
Recruiting NCT04475666 - Replacing Protein Via Enteral Nutrition in Critically Ill Patients N/A
Not yet recruiting NCT04538469 - Absent Visitors: The Wider Implications of COVID-19 on Non-COVID Cardiothoracic ICU Patients, Relatives and Staff
Not yet recruiting NCT04516395 - Optimizing Antibiotic Dosing Regimens for the Treatment of Infection Caused by Carbapenem Resistant Enterobacteriaceae N/A
Withdrawn NCT04043091 - Coronary Angiography in Critically Ill Patients With Type II Myocardial Infarction N/A
Recruiting NCT02989051 - Fluid Restriction Keeps Children Dry Phase 2/Phase 3
Recruiting NCT02922998 - CD64 and Antibiotics in Human Sepsis N/A
Completed NCT02899208 - Can an Actigraph be Used to Predict Physical Function in Intensive Care Patients? N/A
Completed NCT03048487 - Protein Consumption in Critically Ill Patients
Recruiting NCT02163109 - Oxygen Consumption in Critical Illness