Clinical Trials Logo

Clinical Trial Summary

A high blood lactate and a high peripheral to central temperature difference (deltaT) are associated with a higher mortality in critically ill patients. Both measures are signs of a reduced microcirculatory bloodflow or vasoconstriction and are associated with shock. It is unknown which medication can best be used to improve deltaT and lactate clearance.

Ketanserin is being used in the intensive care setting for decades to optimize circulatory parameters. Ketanserin is a serotonin type 2-receptor blocker (5-HT2). Blocking the 5-HT2 receptor with ketanserin can attenuate pathological vasoconstriction. In these ways ketanserin can reduce vasoconstriction and can improve the microcirculation. As a consequence, the enhanced blood flow in the skin will increase the peripheral temperature and decrease deltaT. At the same time an increased flow in the microcirculation may lead to a reduction in lactate production.

Objective:

To determine the effects of a continuous ketanserin infusion on peripheral temperature and lactate clearance in critically ill patients with either a high lactate or a high deltaT.


Clinical Trial Description

Rationale:

A high blood lactate and a high peripheral to central temperature difference (deltaT) are associated with a higher mortality in critically ill patients. Both measures are signs of a reduced microcirculatory bloodflow or vasoconstriction and are associated with shock. On the other hand, it has not been shown yet that interventions leading to improvement of this temperature gap reduces mortality or improves any other outcome measurement. Moreover, it is unknown which medication can best be used to improve deltaT and lactate clearance.

Ketanserin is being used in the intensive care setting for decades to optimize circulatory parameters. Ketanserin is a serotonin type 2-receptor blocker (5-HT2). Blocking the 5-HT2 receptor with ketanserin can attenuate pathological vasoconstriction. In these ways ketanserin can reduce vasoconstriction and can improve the microcirculation. As a consequence, the enhanced blood flow in the skin will increase the peripheral temperature and decrease deltaT. At the same time an increased flow in the microcirculation may lead to a reduction in lactate production.

Objective:

To determine the effects of a continuous ketanserin infusion on peripheral temperature and lactate clearance in critically ill patients with either a high lactate or a high deltaT.

Study design:

A multicentre double blind randomized controlled trial.

Study population:

All adult intensive care patients above 17 years old with a deltaT of >6°C with informed consent given by the patient or legal representative.

Intervention (if applicable):

The intervention is a continuous pump driven Ketanserin infusion of 0.75 ug/kg/min for eight hours.

The control group will receive the same volume of glucose 5%.

Main study parameters/endpoints:

Change in DeltaT (measured per hour) Change in lactate (measured per 2 hours)

Nature and extent of the burden and risks associated with participation, benefit and group relatedness:

The risks of ketanserin infusion are limited but can be a QTc prolongation and a slight decrease in blood pressure. The study needs an arterial blood sample on inclusion, and after 2, 4, 6 and 8 hours of 1.5 ml each. In addition, a 6 ml blood sample at T=4 and T=8 hours. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT03646318
Study type Interventional
Source Onze Lieve Vrouwe Gasthuis
Contact
Status Not yet recruiting
Phase Phase 4
Start date September 1, 2018
Completion date May 1, 2019

See also
  Status Clinical Trial Phase
Completed NCT04551508 - Delirium Screening 3 Methods Study
Recruiting NCT06037928 - Plasma Sodium and Sodium Administration in the ICU
Completed NCT03671447 - Enhanced Recovery After Intensive Care (ERIC) N/A
Recruiting NCT03941002 - Continuous Evaluation of Diaphragm Function N/A
Recruiting NCT04674657 - Does Extra-Corporeal Membrane Oxygenation Alter Antiinfectives Therapy Pharmacokinetics in Critically Ill Patients
Completed NCT04239209 - Effect of Intensivist Communication on Surrogate Prognosis Interpretation N/A
Completed NCT05531305 - Longitudinal Changes in Muscle Mass After Intensive Care N/A
Terminated NCT03335124 - The Effect of Vitamin C, Thiamine and Hydrocortisone on Clinical Course and Outcome in Patients With Severe Sepsis and Septic Shock Phase 4
Completed NCT02916004 - The Use of Nociception Flexion Reflex and Pupillary Dilatation Reflex in ICU Patients. N/A
Recruiting NCT05883137 - High-flow Nasal Oxygenation for Apnoeic Oxygenation During Intubation of the Critically Ill
Completed NCT04479254 - The Impact of IC-Guided Feeding Protocol on Clinical Outcomes in Critically Ill Patients (The IC-Study) N/A
Recruiting NCT04475666 - Replacing Protein Via Enteral Nutrition in Critically Ill Patients N/A
Not yet recruiting NCT04516395 - Optimizing Antibiotic Dosing Regimens for the Treatment of Infection Caused by Carbapenem Resistant Enterobacteriaceae N/A
Not yet recruiting NCT04538469 - Absent Visitors: The Wider Implications of COVID-19 on Non-COVID Cardiothoracic ICU Patients, Relatives and Staff
Withdrawn NCT04043091 - Coronary Angiography in Critically Ill Patients With Type II Myocardial Infarction N/A
Recruiting NCT02989051 - Fluid Restriction Keeps Children Dry Phase 2/Phase 3
Recruiting NCT02922998 - CD64 and Antibiotics in Human Sepsis N/A
Completed NCT02899208 - Can an Actigraph be Used to Predict Physical Function in Intensive Care Patients? N/A
Completed NCT03048487 - Protein Consumption in Critically Ill Patients
Recruiting NCT02163109 - Oxygen Consumption in Critical Illness