Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT05119465
Other study ID # 19400_21052021
Secondary ID
Status Completed
Phase
First received
Last updated
Start date November 1, 2019
Est. completion date June 30, 2021

Study information

Verified date May 2023
Source Aristotle University Of Thessaloniki
Contact n/a
Is FDA regulated No
Health authority
Study type Observational

Clinical Trial Summary

Since the beginning of the COVID-19 pandemic, 195 million people have been infected and 4.2 million have died from the disease or its side-effects. Physicians, healthcare scientists and medical staff continuously try to deal with overloaded hospital admissions, while in parallel, they try to identify meaningful correlations between the severity of infected patients with their symptoms, comorbidities and biomarkers. Artificial Intelligence (AI) and Machine Learning (ML) have been used recently in many areas related to COVID-19 healthcare. The main goal is to manage effectively the wide variety of issues related to COVID-19 and its consequences. The existing applications of ML to COVID-19 healthcare are based on supervised classification which require a labeled training dataset, serving as reference point for learning, as well as predefined classes. However, the existing knowledge about COVID-19 and its consequences is still not solid and the points of common agreement among different scientific communities are still unclear. Therefore, this study aimed to follow an unsupervised clustering approach, where prior knowledge is not required (tabula rasa). More specifically, 268 hospitalized patients at the First Propaedeutic Department of Internal Medicine of AHEPA University Hospital of Thessaloniki were assessed in terms of 40 clinical variables (numerical and categorical), leading to a high-dimensionality dataset. Dimensionality reduction was performed by applying Principal Component Analysis (PCA) on the numerical part of the dataset and Multiple Correspondence Analysis (MCA) on the categorical part of the dataset. Then, the Bayesian Information Criterion(BIC) was applied to Gaussian Mixture Models (GMM) in order to identify the optimal number of clusters, under which, the best grouping of patients occurs. The proposed methodology identified 4 clusters of patients with similar clinical characteristics. The analysis revealed a cluster of asymptomatic patients that resulted in death at a rate of 23.8%. This striking result forces us to reconsider the relationship between the severity of COVID-19 clinical symptoms and patient's mortality.


Description:

An algorithmic pipeline based on unsupervised machine learning algorithms, which aims to operate in tandem with physicians and provide additional knowledge for the proper categorization of COVID-19 infected patients based on their severity, is proposed in this study. Data from patients hospitalized in our clinic are collected and stored in separate Microsoft Excel files (.xlsx), which are loaded into memory. A script is concatenating them all into a single dataframe where they are checked for NaN (Not a Number) values. Because of the nature of the data, patients with missing information are discarded entirely from the dataset, since information inference would be a biased practice for the particular application. Next, we apply data normalization by scaling all numerical variables between the (0,1) range, so that the range of all numerical variables is the same, and any bias towards certain variables is avoided .A thorough and detailed data collection process was designed in order to collect information for the patients, without disturbing the clinical treatment, or upsetting them in the process.


Recruitment information / eligibility

Status Completed
Enrollment 268
Est. completion date June 30, 2021
Est. primary completion date June 30, 2021
Accepts healthy volunteers No
Gender All
Age group N/A and older
Eligibility Inclusion Criteria: - patients that came into emergency department and diagnosed with COVID-19 infection Exclusion Criteria: - none

Study Design


Related Conditions & MeSH terms


Locations

Country Name City State
Greece University General Hospital of Thessaloniki AHEPA Thessaloníki

Sponsors (1)

Lead Sponsor Collaborator
Aristotle University Of Thessaloniki

Country where clinical trial is conducted

Greece, 

Outcome

Type Measure Description Time frame Safety issue
Primary Cluster of patients depending on severity of infection Algorithm produced with artificial intelligence and machine learning approach to classify patients according their status of COVID-19 infection 1 year
See also
  Status Clinical Trial Phase
Withdrawn NCT06065033 - Exercise Interventions in Post-acute Sequelae of Covid-19 N/A
Completed NCT06267534 - Mindfulness-based Mobile Applications Program N/A
Completed NCT05047601 - A Study of a Potential Oral Treatment to Prevent COVID-19 in Adults Who Are Exposed to Household Member(s) With a Confirmed Symptomatic COVID-19 Infection Phase 2/Phase 3
Recruiting NCT04481633 - Efficacy of Pre-exposure Treatment With Hydroxy-Chloroquine on the Risk and Severity of COVID-19 Infection N/A
Recruiting NCT05323760 - Functional Capacity in Patients Post Mild COVID-19 N/A
Completed NCT04612972 - Efficacy, Safety and Immunogenicity of Inactivated SARS-CoV-2 Vaccines (Vero Cell) to Prevent COVID-19 in Healthy Adult Population In Peru Healthy Adult Population In Peru Phase 3
Completed NCT04537949 - A Trial Investigating the Safety and Effects of One BNT162 Vaccine Against COVID-19 in Healthy Adults Phase 1/Phase 2
Recruiting NCT05494424 - Cognitive Rehabilitation in Post-COVID-19 Condition N/A
Active, not recruiting NCT06039449 - A Study to Investigate the Prevention of COVID-19 withVYD222 in Adults With Immune Compromise and in Participants Aged 12 Years or Older Who Are at Risk of Exposure to SARS-CoV-2 Phase 3
Enrolling by invitation NCT05589376 - You and Me Healthy
Completed NCT05158816 - Extracorporal Membrane Oxygenation for Critically Ill Patients With COVID-19
Recruiting NCT04341506 - Non-contact ECG Sensor System for COVID19
Completed NCT04384445 - Zofin (Organicell Flow) for Patients With COVID-19 Phase 1/Phase 2
Completed NCT04512079 - FREEDOM COVID-19 Anticoagulation Strategy Phase 4
Completed NCT05975060 - A Study to Evaluate the Safety and Immunogenicity of an (Omicron Subvariant) COVID-19 Vaccine Booster Dose in Previously Vaccinated Participants and Unvaccinated Participants. Phase 2/Phase 3
Active, not recruiting NCT05542862 - Booster Study of SpikoGen COVID-19 Vaccine Phase 3
Withdrawn NCT05621967 - Phonation Therapy to Improve Symptoms and Lung Physiology in Patients Referred for Pulmonary Rehabilitation N/A
Terminated NCT05487040 - A Study to Measure the Amount of Study Medicine in Blood in Adult Participants With COVID-19 and Severe Kidney Disease Phase 1
Terminated NCT04498273 - COVID-19 Positive Outpatient Thrombosis Prevention in Adults Aged 40-80 Phase 3
Active, not recruiting NCT06033560 - The Effect of Non-invasive Respiratory Support on Outcome and Its Risks in Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV-2)-Related Hypoxemic Respiratory Failure