Coronavirus Disease 2019 (COVID-19) Clinical Trial
— COVID-19Official title:
Evaluation of Silver Nanoparticles as an Oropharyngeal Product (Mouthwash) and Nasal Hygiene, by Health Personnel Working at the Tijuana General Hospital Exposed to Patients Diagnosed With Atypical Pneumonia Caused by SARS-CoV-2
Verified date | May 2021 |
Source | Cluster de Bioeconomia de Baja California, A.C |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
In this research, silver nanoparticles (AgNPs) were tested in vitro and shown to have an inhibitory effect on SARS-CoV-2 infection in cultured cells. Subsequently, the investigators assessed the effects of mouthwash and nose rinse with ARGOVIT® silver nanoparticles (AgNPs), in the prevention of SARS-CoV-2 contagion in health workers consider as high-risk group of acquiring the infection in the General Tijuana Hospital, Mexico, a hospital for the exclusive recruitment of patients diagnosed with COVID-19.
Status | Completed |
Enrollment | 231 |
Est. completion date | September 29, 2020 |
Est. primary completion date | June 30, 2020 |
Accepts healthy volunteers | Accepts Healthy Volunteers |
Gender | All |
Age group | 20 Years to 73 Years |
Eligibility | Inclusion Criteria: - Men and women health workers in the General Tijuana Hospital, Mexico who works in high-risk areas with direct contact with patients infected and diagnosed with COVID-19. Exclusion Criteria: - persons with history of hypersensitivity to silver (rashes and other contraindications), - a history of SARS-CoV-2 infection in the three months prior to the start of the study, any respiratory distress, - and refusal to sign the informed consent. |
Country | Name | City | State |
---|---|---|---|
Mexico | Tijuana General Hospital | Tijuana | Baja California |
Lead Sponsor | Collaborator |
---|---|
Cluster de Bioeconomia de Baja California, A.C | Bionag SAPI de CV, General Hospital Tijuana |
Mexico,
Borrego B, Lorenzo G, Mota-Morales JD, Almanza-Reyes H, Mateos F, López-Gil E, de la Losa N, Burmistrov VA, Pestryakov AN, Brun A, Bogdanchikova N. Potential application of silver nanoparticles to control the infectivity of Rift Valley fever virus in vitro and in vivo. Nanomedicine. 2016 Jul;12(5):1185-92. doi: 10.1016/j.nano.2016.01.021. Epub 2016 Mar 10. — View Citation
Butowt R, Bilinska K. SARS-CoV-2: Olfaction, Brain Infection, and the Urgent Need for Clinical Samples Allowing Earlier Virus Detection. ACS Chem Neurosci. 2020 May 6;11(9):1200-1203. doi: 10.1021/acschemneuro.0c00172. Epub 2020 Apr 13. — View Citation
Cardoso VS, Quelemes PV, Amorin A, Primo FL, Gobo GG, Tedesco AC, Mafud AC, Mascarenhas YP, Corrêa JR, Kuckelhaus SA, Eiras C, Leite JR, Silva D, dos Santos Júnior JR. Collagen-based silver nanoparticles for biological applications: synthesis and characterization. J Nanobiotechnology. 2014 Sep 17;12:36. doi: 10.1186/s12951-014-0036-6. — View Citation
Casale M, Rinaldi V, Sabatino L, Moffa A, Ciccozzi M. Could nasal irrigation and oral rinse reduce the risk for COVID-19 infection? Int J Immunopathol Pharmacol. 2020 Jan-Dec;34:2058738420941757. doi: 10.1177/2058738420941757. — View Citation
Folegatti PM, Ewer KJ, Aley PK, Angus B, Becker S, Belij-Rammerstorfer S, Bellamy D, Bibi S, Bittaye M, Clutterbuck EA, Dold C, Faust SN, Finn A, Flaxman AL, Hallis B, Heath P, Jenkin D, Lazarus R, Makinson R, Minassian AM, Pollock KM, Ramasamy M, Robinson H, Snape M, Tarrant R, Voysey M, Green C, Douglas AD, Hill AVS, Lambe T, Gilbert SC, Pollard AJ; Oxford COVID Vaccine Trial Group. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet. 2020 Aug 15;396(10249):467-478. doi: 10.1016/S0140-6736(20)31604-4. Epub 2020 Jul 20. Erratum in: Lancet. 2020 Aug 15;396(10249):466. Erratum in: Lancet. 2020 Dec 12;396(10266):1884. — View Citation
Gu J, Gong E, Zhang B, Zheng J, Gao Z, Zhong Y, Zou W, Zhan J, Wang S, Xie Z, Zhuang H, Wu B, Zhong H, Shao H, Fang W, Gao D, Pei F, Li X, He Z, Xu D, Shi X, Anderson VM, Leong AS. Multiple organ infection and the pathogenesis of SARS. J Exp Med. 2005 Aug 1;202(3):415-24. Epub 2005 Jul 25. — View Citation
Guan Y, Zheng BJ, He YQ, Liu XL, Zhuang ZX, Cheung CL, Luo SW, Li PH, Zhang LJ, Guan YJ, Butt KM, Wong KL, Chan KW, Lim W, Shortridge KF, Yuen KY, Peiris JS, Poon LL. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science. 2003 Oct 10;302(5643):276-8. Epub 2003 Sep 4. — View Citation
Ho HJ, Zhang ZX, Huang Z, Aung AH, Lim WY, Chow A. Use of a Real-Time Locating System for Contact Tracing of Health Care Workers During the COVID-19 Pandemic at an Infectious Disease Center in Singapore: Validation Study. J Med Internet Res. 2020 May 26;22(5):e19437. doi: 10.2196/19437. — View Citation
Jackson LA, Anderson EJ, Rouphael NG, Roberts PC, Makhene M, Coler RN, McCullough MP, Chappell JD, Denison MR, Stevens LJ, Pruijssers AJ, McDermott A, Flach B, Doria-Rose NA, Corbett KS, Morabito KM, O'Dell S, Schmidt SD, Swanson PA 2nd, Padilla M, Mascola JR, Neuzil KM, Bennett H, Sun W, Peters E, Makowski M, Albert J, Cross K, Buchanan W, Pikaart-Tautges R, Ledgerwood JE, Graham BS, Beigel JH; mRNA-1273 Study Group. An mRNA Vaccine against SARS-CoV-2 - Preliminary Report. N Engl J Med. 2020 Nov 12;383(20):1920-1931. doi: 10.1056/NEJMoa2022483. Epub 2020 Jul 14. — View Citation
Jaume M, Yip MS, Cheung CY, Leung HL, Li PH, Kien F, Dutry I, Callendret B, Escriou N, Altmeyer R, Nal B, Daëron M, Bruzzone R, Peiris JS. Anti-severe acute respiratory syndrome coronavirus spike antibodies trigger infection of human immune cells via a pH- and cysteine protease-independent Fc?R pathway. J Virol. 2011 Oct;85(20):10582-97. doi: 10.1128/JVI.00671-11. Epub 2011 Jul 20. — View Citation
Jeon S, Ko M, Lee J, Choi I, Byun SY, Park S, Shum D, Kim S. Identification of Antiviral Drug Candidates against SARS-CoV-2 from FDA-Approved Drugs. Antimicrob Agents Chemother. 2020 Jun 23;64(7). pii: e00819-20. doi: 10.1128/AAC.00819-20. Print 2020 Jun 23. — View Citation
Jeremiah SS, Miyakawa K, Morita T, Yamaoka Y, Ryo A. Potent antiviral effect of silver nanoparticles on SARS-CoV-2. Biochem Biophys Res Commun. 2020 Nov 26;533(1):195-200. doi: 10.1016/j.bbrc.2020.09.018. Epub 2020 Sep 11. — View Citation
Keech C, Albert G, Cho I, Robertson A, Reed P, Neal S, Plested JS, Zhu M, Cloney-Clark S, Zhou H, Smith G, Patel N, Frieman MB, Haupt RE, Logue J, McGrath M, Weston S, Piedra PA, Desai C, Callahan K, Lewis M, Price-Abbott P, Formica N, Shinde V, Fries L, Lickliter JD, Griffin P, Wilkinson B, Glenn GM. Phase 1-2 Trial of a SARS-CoV-2 Recombinant Spike Protein Nanoparticle Vaccine. N Engl J Med. 2020 Dec 10;383(24):2320-2332. doi: 10.1056/NEJMoa2026920. Epub 2020 Sep 2. — View Citation
Khan MM, Parab SR, Paranjape M. Repurposing 0.5% povidone iodine solution in otorhinolaryngology practice in Covid 19 pandemic. Am J Otolaryngol. 2020 Sep - Oct;41(5):102618. doi: 10.1016/j.amjoto.2020.102618. Epub 2020 Jun 18. — View Citation
Lan FY, Wei CF, Hsu YT, Christiani DC, Kales SN. Work-related COVID-19 transmission in six Asian countries/areas: A follow-up study. PLoS One. 2020 May 19;15(5):e0233588. doi: 10.1371/journal.pone.0233588. eCollection 2020. — View Citation
Li L, Wo J, Shao J, Zhu H, Wu N, Li M, Yao H, Hu M, Dennin RH. SARS-coronavirus replicates in mononuclear cells of peripheral blood (PBMCs) from SARS patients. J Clin Virol. 2003 Dec;28(3):239-44. — View Citation
Logunov DY, Dolzhikova IV, Shcheblyakov DV, Tukhvatulin AI, Zubkova OV, Dzharullaeva AS, Kovyrshina AV, Lubenets NL, Grousova DM, Erokhova AS, Botikov AG, Izhaeva FM, Popova O, Ozharovskaya TA, Esmagambetov IB, Favorskaya IA, Zrelkin DI, Voronina DV, Shcherbinin DN, Semikhin AS, Simakova YV, Tokarskaya EA, Egorova DA, Shmarov MM, Nikitenko NA, Gushchin VA, Smolyarchuk EA, Zyryanov SK, Borisevich SV, Naroditsky BS, Gintsburg AL; Gam-COVID-Vac Vaccine Trial Group. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet. 2021 Feb 20;397(10275):671-681. doi: 10.1016/S0140-6736(21)00234-8. Epub 2021 Feb 2. Erratum in: Lancet. 2021 Feb 20;397(10275):670. — View Citation
Ochoa-Meza AR, Álvarez-Sánchez AR, Romo-Quiñonez CR, Barraza A, Magallón-Barajas FJ, Chávez-Sánchez A, García-Ramos JC, Toledano-Magaña Y, Bogdanchikova N, Pestryakov A, Mejía-Ruiz CH. Silver nanoparticles enhance survival of white spot syndrome virus infected Penaeus vannamei shrimps by activation of its immunological system. Fish Shellfish Immunol. 2019 Jan;84:1083-1089. doi: 10.1016/j.fsi.2018.10.007. Epub 2018 Oct 30. — View Citation
Park SJ, Yu KM, Kim YI, Kim SM, Kim EH, Kim SG, Kim EJ, Casel MAB, Rollon R, Jang SG, Lee MH, Chang JH, Song MS, Jeong HW, Choi Y, Chen W, Shin WJ, Jung JU, Choi YK. Antiviral Efficacies of FDA-Approved Drugs against SARS-CoV-2 Infection in Ferrets. mBio. 2020 May 22;11(3). pii: e01114-20. doi: 10.1128/mBio.01114-20. — View Citation
Ren LL, Wang YM, Wu ZQ, Xiang ZC, Guo L, Xu T, Jiang YZ, Xiong Y, Li YJ, Li XW, Li H, Fan GH, Gu XY, Xiao Y, Gao H, Xu JY, Yang F, Wang XM, Wu C, Chen L, Liu YW, Liu B, Yang J, Wang XR, Dong J, Li L, Huang CL, Zhao JP, Hu Y, Cheng ZS, Liu LL, Qian ZH, Qin C, Jin Q, Cao B, Wang JW. Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study. Chin Med J (Engl). 2020 May 5;133(9):1015-1024. doi: 10.1097/CM9.0000000000000722. — View Citation
Salleh A, Naomi R, Utami ND, Mohammad AW, Mahmoudi E, Mustafa N, Fauzi MB. The Potential of Silver Nanoparticles for Antiviral and Antibacterial Applications: A Mechanism of Action. Nanomaterials (Basel). 2020 Aug 9;10(8). pii: E1566. doi: 10.3390/nano10081566. Review. — View Citation
Schwartz J, King CC, Yen MY. Protecting Healthcare Workers During the Coronavirus Disease 2019 (COVID-19) Outbreak: Lessons From Taiwan's Severe Acute Respiratory Syndrome Response. Clin Infect Dis. 2020 Jul 28;71(15):858-860. doi: 10.1093/cid/ciaa255. — View Citation
Singh S, Sharma N, Singh U, Singh T, Mangal DK, Singh V. Nasopharyngeal wash in preventing and treating upper respiratory tract infections: Could it prevent COVID-19? Lung India. 2020 May-Jun;37(3):246-251. doi: 10.4103/lungindia.lungindia_241_20. Review. — View Citation
To KK, Tsang OT, Yip CC, Chan KH, Wu TC, Chan JM, Leung WS, Chik TS, Choi CY, Kandamby DH, Lung DC, Tam AR, Poon RW, Fung AY, Hung IF, Cheng VC, Chan JF, Yuen KY. Consistent Detection of 2019 Novel Coronavirus in Saliva. Clin Infect Dis. 2020 Jul 28;71(15):841-843. doi: 10.1093/cid/ciaa149. — View Citation
Uskokovic V. Why have nanotechnologies been underutilized in the global uprising against the coronavirus pandemic? Nanomedicine (Lond). 2020 Jul;15(17):1719-1734. doi: 10.2217/nnm-2020-0163. Epub 2020 May 28. Review. — View Citation
Wee LE, Hsieh JYC, Phua GC, Tan Y, Conceicao EP, Wijaya L, Tan TT, Tan BH. Respiratory surveillance wards as a strategy to reduce nosocomial transmission of COVID-19 through early detection: The experience of a tertiary-care hospital in Singapore. Infect Control Hosp Epidemiol. 2020 Jul;41(7):820-825. doi: 10.1017/ice.2020.207. Epub 2020 May 8. — View Citation
Wong SCY, Kwong RT, Wu TC, Chan JWM, Chu MY, Lee SY, Wong HY, Lung DC. Risk of nosocomial transmission of coronavirus disease 2019: an experience in a general ward setting in Hong Kong. J Hosp Infect. 2020 Jun;105(2):119-127. doi: 10.1016/j.jhin.2020.03.036. Epub 2020 Apr 4. — View Citation
Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012 Nov 8;367(19):1814-20. doi: 10.1056/NEJMoa1211721. Epub 2012 Oct 17. Erratum in: N Engl J Med. 2013 Jul 25;369(4):394. — View Citation
Zhu FC, Guan XH, Li YH, Huang JY, Jiang T, Hou LH, Li JX, Yang BF, Wang L, Wang WJ, Wu SP, Wang Z, Wu XH, Xu JJ, Zhang Z, Jia SY, Wang BS, Hu Y, Liu JJ, Zhang J, Qian XA, Li Q, Pan HX, Jiang HD, Deng P, Gou JB, Wang XW, Wang XH, Chen W. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet. 2020 Aug 15;396(10249):479-488. doi: 10.1016/S0140-6736(20)31605-6. Epub 2020 Jul 20. — View Citation
* Note: There are 29 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Incidence of SARS-CoV-2 infection in the experimental group. | Percentage of participants infected of SARS-CoV-2 in the experimental group. | 9 weeks | |
Primary | Incidence of SARS-CoV-2 infection in the control group. | Percentage of participants infected of SARS-CoV-2 in the control group. | 9 weeks | |
Secondary | Number of participants with adverse reactions by AgNPs. | Number of participants with adverse reactions by performing mouthwash and nose rinse with AgNPs. | 9 weeks |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT04516564 -
A Study of AK119 (Anti-CD73 Antibody), a Treatment for COVID-19, in Healthy Subjects
|
Phase 1 | |
Withdrawn |
NCT04519424 -
CSL324 in COVID-19
|
Phase 2 | |
Not yet recruiting |
NCT04395170 -
Convalescent Plasma (PC) and Human Intravenous Anti-COVID-19 Immunoglobulin (IV Anti COVID-19 IgG) in Patients Hospitalized for COVID-19.
|
Phase 2/Phase 3 | |
Completed |
NCT05437289 -
A Study to Evaluate the Safety and Tolerability of AZD7442 in Healthy Chinese Adults
|
Phase 1 | |
Completed |
NCT05594147 -
An Observational Study, Called ROCURS, to Learn About COVID-19 Related Outcomes in People With Cancer Who Are Treated With Tyrosine Kinase Inhibitors (TKIs) Including Regorafenib or Sorafenib
|
||
Withdrawn |
NCT04848467 -
COVID-19: A Trial Studying the SARS-CoV-2 mRNA Vaccine CVnCoV to Learn About the Immune Response, the Safety, and the Degree of Typical Vaccination Reactions When CVnCoV is Given at the Same Time as a Flu Vaccine Compared to When the Vaccines Are Separately Given in Adults 60 Years of Age and Older
|
Phase 3 | |
Completed |
NCT04588363 -
COVID-19: Pediatric Research Immune Network on SARS-CoV-2 and MIS-C
|
||
Terminated |
NCT04877743 -
Non-Interventional Enhanced Active Surveillance Study of Adults Vaccinated With AZD1222
|
||
Completed |
NCT04742725 -
A Study to Evaluate the Efficacy and Safety of Prothione™ Capsules for Mild to Moderate Coronavirus Disease 2019 (COVID-19)
|
Phase 2 | |
Completed |
NCT04375761 -
COVID-19: Human Epidemiology and Response to SARS-CoV-2
|
||
Completed |
NCT04378777 -
Immunophenotyping Assessment in a COVID-19 Cohort
|
||
Completed |
NCT04545047 -
Observational Study of Convalescent Plasma for Treatment of Veterans With COVID-19
|
||
Completed |
NCT04327206 -
BCG Vaccination to Protect Healthcare Workers Against COVID-19
|
Phase 3 | |
Terminated |
NCT05375760 -
A Randomized, Open-label, Dose-ranging Study in Adults and Pediatric Individuals ≥ 12 Years of Age to Assess the Safety, Immunogenicity, Pharmacokinetics, and Pharmacodynamics of AZD7442, for Pre-exposure Prophylaxis of COVID-19
|
Phase 2 | |
Completed |
NCT04344977 -
Collection of Anti-SARS-CoV-2 Immune Plasma
|
||
Terminated |
NCT04389840 -
Dociparstat for the Treatment of Severe COVID-19 in Adults at High Risk of Respiratory Failure
|
Phase 2/Phase 3 | |
Withdrawn |
NCT04425733 -
MK-5475 in Participants With Hypoxemia Due to COVID-19 Pneumonia (MK-5475-009)
|
Phase 1 | |
Not yet recruiting |
NCT04438837 -
Hydroxychloroquine Post-Exposure Prophylaxis for Coronavirus Disease (COVID-19) Among Health-Care Workers
|
N/A | |
Completed |
NCT04409509 -
Treatment With CSL312 in Adults With Coronavirus Disease 2019 (COVID-19)
|
Phase 2 | |
Completed |
NCT04275245 -
Clinical Study of Anti-CD147 Humanized Meplazumab for Injection to Treat With 2019-nCoV Pneumonia
|
Phase 1/Phase 2 |