Covid19 Clinical Trial
— VOLTOfficial title:
Efficacy of Bimodal Visual-Olfactory Training in Participants With COVID-19 Resultant Hyposmia or Anosmia Using Participant-Preferred Scents
Verified date | June 2022 |
Source | Washington University School of Medicine |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
Olfactory dysfunction is a defining symptom of COVID-19 infection. As the number of total, confirmed COVID-19 cases approached 19 million in the United States, it is estimated that there will be 250,000 to 500,000 new cases of chronically diminished smell (hyposmia) and loss of smell (anosmia) this year. Olfactory dysfunction is proposed to worsen numerous common co-morbidities in patients and has been shown to lead to a decreased quality of life. There are very few effective treatments for hyposmia or anosmia, and there is no gold standard of treatment. One proposed treatment option is smell training, which has shown promising yet variable results in a multitude of studies. It garners its theoretical basis from the high degree of neuroplasticity within the olfactory system, both peripherally and centrally. However, due to a relative inadequacy of proper studies on olfactory training, it is unknown what the most efficacious method in which to undergo the training is. This study proposes two novel procedural modifications to smell training in an attempt to enhance its efficacy. The investigators propose using a bimodal visual-olfactory approach, rather than relying on olfaction alone, during smell training, as well as using patient-preferred scents in the training that are identified as important by the study participant, rather than pre-determined scents with inadequate scientific backing. The investigators hypothesize that by utilizing bimodal visual-olfactory training and patient-selected scents, the olfactory training will be more efficacious and more motivating for participants.
Status | Completed |
Enrollment | 240 |
Est. completion date | March 11, 2022 |
Est. primary completion date | March 11, 2022 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years to 70 Years |
Eligibility | Inclusion Criteria: - Subjective or clinically diagnosed olfactory dysfunction of 3 months duration or longer initially diagnosed within 2 weeks of a COVID-19 infection Exclusion Criteria: - Diagnosed olfactory dysfunction due to head trauma - Chronic rhinosinusitis - Congenital olfactory dysfunction - Nasal polyps - Neurodegenerative disorders (for example, Alzheimer or Parkinson Disease) - Pre-Assessment UPSIT score =34 for males and =35 for females - Pregnant - Inability to read, write, and understand English - Inability to perform home olfactory training (for example, due to limited access to internet) - Residence outside of the the United States of America - Previously conducting smell training |
Country | Name | City | State |
---|---|---|---|
United States | Washington University School of Medicine in Saint Louis | Saint Louis | Missouri |
Lead Sponsor | Collaborator |
---|---|
Washington University School of Medicine |
United States,
Albrecht J, Anzinger A, Kopietz R, Schöpf V, Kleemann AM, Pollatos O, Wiesmann M. Test-retest reliability of the olfactory detection threshold test of the Sniffin' sticks. Chem Senses. 2008 Jun;33(5):461-7. doi: 10.1093/chemse/bjn013. Epub 2008 Apr 4. — View Citation
Bavelier D, Dye MW, Hauser PC. Do deaf individuals see better? Trends Cogn Sci. 2006 Nov;10(11):512-8. Epub 2006 Oct 2. Review. — View Citation
Boesveldt S, Postma EM, Boak D, Welge-Luessen A, Schöpf V, Mainland JD, Martens J, Ngai J, Duffy VB. Anosmia-A Clinical Review. Chem Senses. 2017 Sep 1;42(7):513-523. doi: 10.1093/chemse/bjx025. Review. Erratum in: Chem Senses. 2017 Sep 1;42(7):607. — View Citation
Cain WS, Gent JF, Goodspeed RB, Leonard G. Evaluation of olfactory dysfunction in the Connecticut Chemosensory Clinical Research Center. Laryngoscope. 1988 Jan;98(1):83-8. — View Citation
Croy I, Nordin S, Hummel T. Olfactory disorders and quality of life--an updated review. Chem Senses. 2014 Mar;39(3):185-94. doi: 10.1093/chemse/bjt072. Epub 2014 Jan 15. Review. — View Citation
Deems DA, Doty RL, Settle RG, Moore-Gillon V, Shaman P, Mester AF, Kimmelman CP, Brightman VJ, Snow JB Jr. Smell and taste disorders, a study of 750 patients from the University of Pennsylvania Smell and Taste Center. Arch Otolaryngol Head Neck Surg. 1991 May;117(5):519-28. — View Citation
Doty RL, Frye RE, Agrawal U. Internal consistency reliability of the fractionated and whole University of Pennsylvania Smell Identification Test. Percept Psychophys. 1989 May;45(5):381-4. — View Citation
Doty RL, Shaman P, Dann M. Development of the University of Pennsylvania Smell Identification Test: a standardized microencapsulated test of olfactory function. Physiol Behav. 1984 Mar;32(3):489-502. — View Citation
Doty RL. Office procedures for quantitative assessment of olfactory function. Am J Rhinol. 2007 Jul-Aug;21(4):460-73. Review. — View Citation
Doty RL. Olfaction in Parkinson's disease and related disorders. Neurobiol Dis. 2012 Jun;46(3):527-52. doi: 10.1016/j.nbd.2011.10.026. Epub 2011 Dec 20. Review. — View Citation
Doty RL. Olfactory dysfunction and its measurement in the clinic. World J Otorhinolaryngol Head Neck Surg. 2015 Oct 26;1(1):28-33. doi: 10.1016/j.wjorl.2015.09.007. eCollection 2015 Sep. Review. — View Citation
Dunlop BW, Gray J, Rapaport MH. Transdiagnostic Clinical Global Impression Scoring for Routine Clinical Settings. Behav Sci (Basel). 2017 Jun 27;7(3). pii: E40. doi: 10.3390/bs7030040. — View Citation
Fleiner F, Lau L, Göktas Ö. Active olfactory training for the treatment of smelling disorders. Ear Nose Throat J. 2012 May;91(5):198-203, 215. — View Citation
Frasnelli J, Hummel T. Olfactory dysfunction and daily life. Eur Arch Otorhinolaryngol. 2005 Mar;262(3):231-5. Epub 2004 May 5. — View Citation
Geißler K, Reimann H, Gudziol H, Bitter T, Guntinas-Lichius O. Olfactory training for patients with olfactory loss after upper respiratory tract infections. Eur Arch Otorhinolaryngol. 2014 Jun;271(6):1557-62. doi: 10.1007/s00405-013-2747-y. Epub 2013 Oct 6. — View Citation
Giacomelli A, Pezzati L, Conti F, Bernacchia D, Siano M, Oreni L, Rusconi S, Gervasoni C, Ridolfo AL, Rizzardini G, Antinori S, Galli M. Self-reported Olfactory and Taste Disorders in Patients With Severe Acute Respiratory Coronavirus 2 Infection: A Cross-sectional Study. Clin Infect Dis. 2020 Jul 28;71(15):889-890. doi: 10.1093/cid/ciaa330. — View Citation
Gudziol V, Lötsch J, Hähner A, Zahnert T, Hummel T. Clinical significance of results from olfactory testing. Laryngoscope. 2006 Oct;116(10):1858-63. — View Citation
Harless L, Liang J. Pharmacologic treatment for postviral olfactory dysfunction: a systematic review. Int Forum Allergy Rhinol. 2016 Jul;6(7):760-7. doi: 10.1002/alr.21727. Epub 2016 Feb 16. Review. — View Citation
Hedner M, Larsson M, Arnold N, Zucco GM, Hummel T. Cognitive factors in odor detection, odor discrimination, and odor identification tasks. J Clin Exp Neuropsychol. 2010 Dec;32(10):1062-7. doi: 10.1080/13803391003683070. Epub 2010 Apr 30. — View Citation
Hoffman HJ, Rawal S, Li CM, Duffy VB. New chemosensory component in the U.S. National Health and Nutrition Examination Survey (NHANES): first-year results for measured olfactory dysfunction. Rev Endocr Metab Disord. 2016 Jun;17(2):221-40. doi: 10.1007/s11154-016-9364-1. Review. — View Citation
Hugh SC, Siu J, Hummel T, Forte V, Campisi P, Papsin BC, Propst EJ. Olfactory testing in children using objective tools: comparison of Sniffin' Sticks and University of Pennsylvania Smell Identification Test (UPSIT). J Otolaryngol Head Neck Surg. 2015 Mar 1;44:10. doi: 10.1186/s40463-015-0061-y. — View Citation
Hummel C, Zucco GM, Iannilli E, Maboshe W, Landis BN, Hummel T. OLAF: standardization of international olfactory tests. Eur Arch Otorhinolaryngol. 2012 Mar;269(3):871-80. doi: 10.1007/s00405-011-1770-0. Epub 2011 Sep 21. Review. — View Citation
Hummel T, Rissom K, Reden J, Hähner A, Weidenbecher M, Hüttenbrink KB. Effects of olfactory training in patients with olfactory loss. Laryngoscope. 2009 Mar;119(3):496-9. doi: 10.1002/lary.20101. — View Citation
Isaiah A, Vongpaisal T, King AJ, Hartley DE. Multisensory training improves auditory spatial processing following bilateral cochlear implantation. J Neurosci. 2014 Aug 13;34(33):11119-30. doi: 10.1523/JNEUROSCI.4767-13.2014. — View Citation
Kawase T, Sakamoto S, Hori Y, Maki A, Suzuki Y, Kobayashi T. Bimodal audio-visual training enhances auditory adaptation process. Neuroreport. 2009 Sep 23;20(14):1231-4. doi: 10.1097/WNR.0b013e32832fbef8. — View Citation
Kollndorfer K, Fischmeister FP, Kowalczyk K, Hoche E, Mueller CA, Trattnig S, Schöpf V. Olfactory training induces changes in regional functional connectivity in patients with long-term smell loss. Neuroimage Clin. 2015 Sep 15;9:401-10. doi: 10.1016/j.nicl.2015.09.004. eCollection 2015. — View Citation
Kollndorfer K, Kowalczyk K, Hoche E, Mueller CA, Pollak M, Trattnig S, Schöpf V. Recovery of olfactory function induces neuroplasticity effects in patients with smell loss. Neural Plast. 2014;2014:140419. doi: 10.1155/2014/140419. Epub 2014 Dec 3. — View Citation
Konstantinidis I, Tsakiropoulou E, Bekiaridou P, Kazantzidou C, Constantinidis J. Use of olfactory training in post-traumatic and postinfectious olfactory dysfunction. Laryngoscope. 2013 Dec;123(12):E85-90. doi: 10.1002/lary.24390. Epub 2013 Oct 4. — View Citation
Lechien JR, Chiesa-Estomba CM, De Siati DR, Horoi M, Le Bon SD, Rodriguez A, Dequanter D, Blecic S, El Afia F, Distinguin L, Chekkoury-Idrissi Y, Hans S, Delgado IL, Calvo-Henriquez C, Lavigne P, Falanga C, Barillari MR, Cammaroto G, Khalife M, Leich P, Souchay C, Rossi C, Journe F, Hsieh J, Edjlali M, Carlier R, Ris L, Lovato A, De Filippis C, Coppee F, Fakhry N, Ayad T, Saussez S. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol. 2020 Aug;277(8):2251-2261. doi: 10.1007/s00405-020-05965-1. Epub 2020 Apr 6. — View Citation
Marine N, Boriana A. Olfactory markers of depression and Alzheimer's disease. Neurosci Biobehav Rev. 2014 Sep;45:262-70. doi: 10.1016/j.neubiorev.2014.06.016. Epub 2014 Jul 6. Review. — View Citation
Neuland C, Bitter T, Marschner H, Gudziol H, Guntinas-Lichius O. Health-related and specific olfaction-related quality of life in patients with chronic functional anosmia or severe hyposmia. Laryngoscope. 2011 Apr;121(4):867-72. doi: 10.1002/lary.21387. Epub 2011 Feb 4. — View Citation
Pekala K, Chandra RK, Turner JH. Efficacy of olfactory training in patients with olfactory loss: a systematic review and meta-analysis. Int Forum Allergy Rhinol. 2016 Mar;6(3):299-307. doi: 10.1002/alr.21669. Epub 2015 Dec 1. Review. — View Citation
Quint C, Temmel AF, Schickinger B, Pabinger S, Ramberger P, Hummel T. Patterns of non-conductive olfactory disorders in eastern Austria: a study of 120 patients from the Department of Otorhinolaryngology at the University of Vienna. Wien Klin Wochenschr. 2001 Jan 15;113(1-2):52-7. — View Citation
Runnebaum B, Runnebaum H, Stöber I, Zander J. Progesterone 20 alpha-dihydroprogesterone and 20 beta-dihydroprogesterone levels in different compartments from the human foeto-placental unit. Acta Endocrinol (Copenh). 1975 Nov;80(3):558-68. — View Citation
Seiden AM, Duncan HJ. The diagnosis of a conductive olfactory loss. Laryngoscope. 2001 Jan;111(1):9-14. — View Citation
Seiden AM. Postviral olfactory loss. Otolaryngol Clin North Am. 2004 Dec;37(6):1159-66. Review. — View Citation
Suzuki M, Saito K, Min WP, Vladau C, Toida K, Itoh H, Murakami S. Identification of viruses in patients with postviral olfactory dysfunction. Laryngoscope. 2007 Feb;117(2):272-7. — View Citation
Wang L, Chen L, Jacob T. Evidence for peripheral plasticity in human odour response. J Physiol. 2004 Jan 1;554(Pt 1):236-44. — View Citation
* Note: There are 38 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | University of Pennsylvania Smell Identification Test (UPSIT) | The UPSIT includes 4 odor-impregnated booklets that contain 10 forced-choice multiple choice questions each for participants to scratch-and-sniff to identify various odors and is a commercially available test. Normosmia is defined as =34 for males and =35 for females, and a change of 4 points or more from baseline indicates a clinically meaningful result. | Measurement will be taken at time zero (pre-intervention) and 12 weeks (post-intervention) | |
Secondary | Clinical Global Impression Severity (CGI-S) Scale | The CGI-S is a subjective rating scale in which a participant can rate the severity of their dysfunction. The scale is rated from 1-7 with 1 being normal sense of smell, 4 being moderate loss of smell, and 7 being complete loss of smell. Each rating has a definition to better elucidate what any particular rating might mean, so as to decrease variability between patient responses with the same subjective level of dysfunction or improvement. | Measurement will be taken at time zero (pre-intervention) and 12 weeks (post-intervention) | |
Secondary | Clinical Global Impression Improvement (CGI-I) Scale | The CGI-I is a subjective rating scale in which a participant can rate the rate the improvement (or lack thereof) of their dysfunction after smell training. The scale is rated from 1-7 with 1 being very much improved sense of smell, 4 being no change in sense of smell, and 7 being very much worse sense of smell. Each rating has a definition to better elucidate what any particular rating might mean, so as to decrease variability between patient responses with the same subjective level of dysfunction or improvement. | Measurement will be taken at time zero (pre-intervention) and 12 weeks (post-intervention) | |
Secondary | Olfactory Dysfunction Outcomes Rating (ODOR) | A 28-item health-related quality of life instrument specific for olfactory dysfunction developed by Dr. Jake Lee in Dr. Jay F. Piccirillo's lab at Washington University. | Measurement will be taken at time zero (pre-intervention) and 12 weeks (post-intervention) |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT05047692 -
Safety and Immunogenicity Study of AdCLD-CoV19-1: A COVID-19 Preventive Vaccine in Healthy Volunteers
|
Phase 1 | |
Recruiting |
NCT04395768 -
International ALLIANCE Study of Therapies to Prevent Progression of COVID-19
|
Phase 2 | |
Completed |
NCT04508777 -
COVID SAFE: COVID-19 Screening Assessment for Exposure
|
||
Completed |
NCT04506268 -
COVID-19 SAFE Enrollment
|
N/A | |
Terminated |
NCT04555096 -
A Trial of GC4419 in Patients With Critical Illness Due to COVID-19
|
Phase 2 | |
Completed |
NCT04961541 -
Evaluation of the Safety and Immunogenicity of Influenza and COVID-19 Combination Vaccine
|
Phase 1/Phase 2 | |
Active, not recruiting |
NCT04546737 -
Study of Morphological, Spectral and Metabolic Manifestations of Neurological Complications in Covid-19 Patients
|
N/A | |
Not yet recruiting |
NCT04543006 -
Persistence of Neutralizing Antibodies 6 and 12 Months After a Covid-19
|
N/A | |
Terminated |
NCT04542993 -
Can SARS-CoV-2 Viral Load and COVID-19 Disease Severity be Reduced by Resveratrol-assisted Zinc Therapy
|
Phase 2 | |
Completed |
NCT04532294 -
Safety, Tolerability, Pharmacokinetics, and Immunogenicity of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2/COVID-19) Neutralizing Antibody in Healthy Participants
|
Phase 1 | |
Completed |
NCT04494646 -
BARCONA: A Study of Effects of Bardoxolone Methyl in Participants With SARS-Corona Virus-2 (COVID-19)
|
Phase 2 | |
Terminated |
NCT04581915 -
PHRU CoV01 A Trial of Triazavirin (TZV) for the Treatment of Mild-moderate COVID-19
|
Phase 2/Phase 3 | |
Completed |
NCT04387292 -
Ocular Sequelae of Patients Hospitalized for Respiratory Failure During the COVID-19 Epidemic
|
N/A | |
Completed |
NCT04537663 -
Prevention Of Respiratory Tract Infection And Covid-19 Through BCG Vaccination In Vulnerable Older Adults
|
Phase 4 | |
Not yet recruiting |
NCT04527211 -
Effectiveness and Safety of Ivermectin for the Prevention of Covid-19 Infection in Colombian Health Personnel
|
Phase 3 | |
Completed |
NCT04507867 -
Effect of a NSS to Reduce Complications in Patients With Covid-19 and Comorbidities in Stage III
|
N/A | |
Not yet recruiting |
NCT05038449 -
Study to Evaluate the Efficacy and Safety of Colchicine Tablets in Patients With COVID-19
|
N/A | |
Completed |
NCT04979858 -
Reducing Spread of COVID-19 in a University Community Setting: Role of a Low-Cost Reusable Form-Fitting Fabric Mask
|
N/A | |
Completed |
NCT04610502 -
Efficacy and Safety of Two Hyperimmune Equine Anti Sars-CoV-2 Serum in COVID-19 Patients
|
Phase 2 | |
Active, not recruiting |
NCT06042855 -
ACTIV-6: COVID-19 Study of Repurposed Medications - Arm G (Metformin)
|
Phase 3 |