Clinical Trials Logo

Clinical Trial Summary

Given the current situation concerning healthcare, population demographics and economy, it seems required to look for new approaches in the health system. The use of new technologies must be the main factor for this change. GENERAL OBJECTIVE: To determine the impact that the application of an artificial intelligence system (Machine Learning) could have on an active telemonitoring programme of readmitted COPD patients. Particular objectives: to determine the changes in: - The use of healthcare resources. - Patients´ quality of life. - Costs. - Load of work. - Daily clinical practice. - Inflammation markers METHODS: Based on the telEPOC programme and Machine Learning developement in this project, non-randomized intervention study, with two branches: intervention (Galdakao hospital) and control (Cruces and Basurto hospital). Sample size of at least 115 patients per hospital (115 in the intervention branch and 230 in the control branch). A 2-year follow-up. Uni and multivariate statistics will be applied.


Clinical Trial Description

Telemonitoring programmes are an alternative to the traditional systems of patients' control, specially in chronic diseases. This kind of tools are also important because of the aging of the population, the increase in chronic diseases and the consequent increase in costs of maintenance of the health systems. On the other hand, nowadays these chronic patients are especially attended because of exacerbations, fundamentally in emergencies and hospitalization, and also in in-person scheduled consultations when patients are stable. Then, a closer attention is more desirable by the point of view of clinic, management, and costs. COPD (Chronic Obstructive Pulmonary Disease) is a highly prevalent disease. Moreover, it has a high consumption of sanitary resources and costs, 50% of whom are due to hospitalizations. Furthermore, exacerbations in COPD and specially the severe ones, have important consequences for patients (decrease of pulmonary function, worsening of quality of life and increase in mortality). Because of that, telemonitoring appears to be a solution to improve the control of these patients and improve the consumption of resources. In Galdakao Hospital in Spain, it was initiated a telemonitoring programme in COPD patients who re-admit to hospital. Its primary objective was tos reduce readmissions because of COPD exacerbations and it could demonstrate a significant decrease in the use of sanitary resources (hospitalizations, visit to emergences department, readmissions and average stay days). It also demonstrated a less worsening in clinical symptoms and quality of life in more severe patients. However, there are three factors that are very important in chronic diseases: the increase in aging people, the increase of people with chronic diseases and the fast evolution of technology, specially the recollection and information processing systems. Machine Learning (ML) is the most important part of de Artificial Intelligence, and its objective is the learning of a computer. The computer writes its own programmes to solve problems that we do not know how to solve. When works are difficult, like doing predictions in medical scenarios, ML algorithms need a high quantity of dates to get the learning. Most medical data bases have inconveniences that come from human intervention, like missing data, wrong values, etc. Because of that, programmes based on telemedicine appears to be an ideal platform for ML algorithms. This is because telemedicine systems normally produce a periodic flow of collected data by electronic ways and they are directly saved in a data base. This constant flow of dates and the low participation of people in the recollection and storage of them, give high quality to data bases, which ML algorithms can use to do the best predictions. Because of that, TelEPOC (the Telemonitoring program in a COPD cohort, in Galdakao Hospital) shows to be the best option to use in its data the ML algorithms, due to the quality and the quantity of generated data, and also because of the utility of those predictions in the clinical practice. In this situation, the question is if investigators could anticipate to an exacerbation or how much they could anticipate a manifestation of an exacerbation. To test this hypothesis, it is presented here a project that uses Artificial Intelligence (ML). Investigators previously did a test of this system, that gave promising results. That prototype was trained with retrospective data that TelEPOC programme had recollected before and it was based on an ML algorithm called Random Forests. With this probe they got a ROC curve (receiver operating characteristic curve) of 0,8 in prediction of suffering an exacerbation in following three days. Currently in Galdakao Hospital there is developing a ML system in the TelEPOC programme. Its objective is to anticipate to an alarm (exacerbation). Whit this purpose investigators consider a lot of additional questions that can be investigated, like for example: how can affect the arrival of this technology in the diary clinical practice? In this project the use of ML can change the way of focus the clinical assistance. There are tools than can predict de evolution of the patients. Another question is that if investigators anticipate an exacerbation, they could change pathogenic basis (inflammatory mediators) that round a COPD exacerbation. Investigators considerate this initiative like pioneer in this field of COPD and chronic diseases. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04978922
Study type Interventional
Source Hospital Galdakao-Usansolo
Contact Cristobal Esteban, MD
Phone +34 94 400 7002
Email cristobal.est@gmail.com
Status Recruiting
Phase N/A
Start date January 1, 2018
Completion date June 1, 2022

See also
  Status Clinical Trial Phase
Active, not recruiting NCT06000696 - Healthy at Home Pilot
Active, not recruiting NCT03927820 - A Pharmacist-Led Intervention to Increase Inhaler Access and Reduce Hospital Readmissions (PILLAR) N/A
Completed NCT04043728 - Addressing Psychological Risk Factors Underlying Smoking Persistence in COPD Patients: The Fresh Start Study N/A
Completed NCT04105075 - COPD in Obese Patients
Recruiting NCT05825261 - Exploring Novel Biomarkers for Emphysema Detection
Active, not recruiting NCT04075331 - Mepolizumab for COPD Hospital Eosinophilic Admissions Pragmatic Trial Phase 2/Phase 3
Terminated NCT03640260 - Respiratory Regulation With Biofeedback in COPD N/A
Recruiting NCT04872309 - MUlti-nuclear MR Imaging Investigation of Respiratory Disease-associated CHanges in Lung Physiology
Recruiting NCT05145894 - Differentiation of Asthma/COPD Exacerbation and Stable State Using Automated Lung Sound Analysis With LungPass Device
Withdrawn NCT04210050 - Sleep Ventilation for Patients With Advanced Hypercapnic COPD N/A
Terminated NCT03284203 - Feasibility of At-Home Handheld Spirometry N/A
Recruiting NCT06110403 - Impact of Long-acting Bronchodilator- -Corticoid Inhaled Therapy on Ventilation, Lung Function and Breathlessness Phase 1/Phase 2
Active, not recruiting NCT06040424 - Comparison of Ipratropium / Levosalbutamol Fixed Dose Combination and Ipratropium and Levosalbutamol Free Dose Combination in pMDI Form in Stable Chronic Obstructive Pulmonary Disease (COPD) Patients Phase 3
Recruiting NCT05865184 - Evaluation of Home-based Sensor System to Detect Health Decompensation in Elderly Patients With History of CHF or COPD
Recruiting NCT04868357 - Hypnosis for the Management of Anxiety and Breathlessness During a Pulmonary Rehabilitation Program N/A
Completed NCT01892566 - Using Mobile Health to Respond Early to Acute Exacerbations of COPD in HIV N/A
Completed NCT04119856 - Outgoing Lung Team - a Cross-sectorial Intervention in Patients With COPD N/A
Completed NCT04485741 - Strados System at Center of Excellence
Completed NCT03626519 - Effects of Menthol on Dyspnoea in COPD Patients N/A
Recruiting NCT04860375 - Multidisciplinary Management of Severe COPD N/A