Copd Clinical Trial
Official title:
Impact of a Low-load Eccentric Training Program on Peripheral Muscle Function in Patients With Chronic Obstructive Pulmonary Disease
Verified date | March 2022 |
Source | Fondazione Don Carlo Gnocchi Onlus |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
Skeletal muscle dysfunction as a systemic consequence of chronic obstructive pulmonary disease (COPD) has a major impact on quality of life, health care resource utilization, and mortality of patients with this disease. In fact, a vicious circle of inactivity and disuse is established in the advanced stages of the disease, inducing a progressive decline in exercise tolerance and a loss of muscle mass (especially in locomotor muscles), resulting in the inability of patients to perform even the simplest daily activities. In this context, the multidisciplinary rehabilitation approach includes not only recovery of exercise capacity but also training aimed at restoring muscle function in patients with COPD. However, there is considerable methodological variability among muscle resistance training programs used in clinical practice with patients with COPD. This is compounded by the need to identify alternative training strategies effective in inducing functional adaptation in skeletal muscle without increasing the degree of dyspnea or fatigue in those symptomatic patients with advanced stages of disease. Among these, eccentric exercise or negative work, i.e. the stretching of the muscle during the active contraction phase, represents a valid alternative to traditional concentric training in various rehabilitation contexts. The main advantages of this training method are: 1) eccentric contraction is able to produce greater forces than isometric and concentric contraction; 2) for the same resistance, eccentric contraction has a lower metabolic cost than concentric contraction. For these reasons, eccentric exercise is a valid method of muscle strengthening in rehabilitation and in particular in those subjects unable to sustain a high cardiorespiratory effort, as in the case of patients with moderate-severe COPD. Previous studies have also shown that eccentric exercise, even at low load, produces results equivalent if not superior to traditional training with respect to some particular characteristics of muscle function such as power and hypertrophy. However, eccentric training programs for muscle dysfunction recovery in patients with COPD are underused in clinical practice, so far. In contrast, the so called iso-weight eccentric training, more suitable for clinical practice, could also be applied to rehabilitation programs designed for COPD patients. The aim of this study is therefore to evaluate the reliability and efficacy of a low-load eccentric exercise training program compared to usual care for the improvement of muscle function in patients with COPD.
Status | Completed |
Enrollment | 30 |
Est. completion date | November 30, 2022 |
Est. primary completion date | November 30, 2022 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 40 Years to 85 Years |
Eligibility | Inclusion Criteria: - COPD diagnosis (GOLD stage: II-III-IV), defined as post-bronchodilator forced expiratory volume in 1s (FEV1)/forced vital capacity < 0.7 and FEV1 < 80% predicted. Exclusion Criteria: - Restrictive lung disease, unstable conditions, recent exacerbation, infection, embolism, pneumothorax, thoracic or abdominal surgery (less than 3 months before recruitment). - Cardiologic conditions like myocardial infarction (less than 6 months before recruitment), heart failure, or severe angina. - Inability of perform the exercise training (e.g. orthopaedic conditions). - Incapability to understand the instructions required to carry out the tests and assessments planned. |
Country | Name | City | State |
---|---|---|---|
Italy | IRCCS Fondazione Don Carlo Gnocchi | Milan |
Lead Sponsor | Collaborator |
---|---|
Fondazione Don Carlo Gnocchi Onlus |
Italy,
Barreiro E, Gea J. Respiratory and Limb Muscle Dysfunction in COPD. COPD. 2015 Aug;12(4):413-26. doi: 10.3109/15412555.2014.974737. — View Citation
Bourbeau J, De Sousa Sena R, Taivassalo T, Richard R, Jensen D, Baril J, Rocha Vieira DS, Perrault H. Eccentric versus conventional cycle training to improve muscle strength in advanced COPD: A randomized clinical trial. Respir Physiol Neurobiol. 2020 May;276:103414. doi: 10.1016/j.resp.2020.103414. Epub 2020 Feb 9. — View Citation
Dellaca RL, Santus P, Aliverti A, Stevenson N, Centanni S, Macklem PT, Pedotti A, Calverley PM. Detection of expiratory flow limitation in COPD using the forced oscillation technique. Eur Respir J. 2004 Feb;23(2):232-40. doi: 10.1183/09031936.04.00046804. — View Citation
Douglas J, Pearson S, Ross A, McGuigan M. Chronic Adaptations to Eccentric Training: A Systematic Review. Sports Med. 2017 May;47(5):917-941. doi: 10.1007/s40279-016-0628-4. — View Citation
Ellis R, Shields N, Lim K, Dodd KJ. Eccentric exercise in adults with cardiorespiratory disease: a systematic review. Clin Rehabil. 2015 Dec;29(12):1178-97. doi: 10.1177/0269215515574783. Epub 2015 Mar 10. — View Citation
Franchi MV, Maffiuletti NA. Distinct modalities of eccentric exercise: different recipes, not the same dish. J Appl Physiol (1985). 2019 Sep 1;127(3):881-883. doi: 10.1152/japplphysiol.00093.2019. Epub 2019 May 9. No abstract available. — View Citation
Franssen FM, Rutten EP, Groenen MT, Vanfleteren LE, Wouters EF, Spruit MA. New reference values for body composition by bioelectrical impedance analysis in the general population: results from the UK Biobank. J Am Med Dir Assoc. 2014 Jun;15(6):448.e1-6. doi: 10.1016/j.jamda.2014.03.012. Epub 2014 Apr 20. — View Citation
LaStayo P, Marcus R, Dibble L, Frajacomo F, Lindstedt S. Eccentric exercise in rehabilitation: safety, feasibility, and application. J Appl Physiol (1985). 2014 Jun 1;116(11):1426-34. doi: 10.1152/japplphysiol.00008.2013. Epub 2013 Jul 3. — View Citation
Luxton N, Alison JA, Wu J, Mackey MG. Relationship between field walking tests and incremental cycle ergometry in COPD. Respirology. 2008 Nov;13(6):856-62. doi: 10.1111/j.1440-1843.2008.01355.x. Erratum In: Respirology. 2013 Oct;18(7):1158. — View Citation
Maltais F, Decramer M, Casaburi R, Barreiro E, Burelle Y, Debigare R, Dekhuijzen PN, Franssen F, Gayan-Ramirez G, Gea J, Gosker HR, Gosselink R, Hayot M, Hussain SN, Janssens W, Polkey MI, Roca J, Saey D, Schols AM, Spruit MA, Steiner M, Taivassalo T, Troosters T, Vogiatzis I, Wagner PD; ATS/ERS Ad Hoc Committee on Limb Muscle Dysfunction in COPD. An official American Thoracic Society/European Respiratory Society statement: update on limb muscle dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2014 May 1;189(9):e15-62. doi: 10.1164/rccm.201402-0373ST. — View Citation
Medina-Mirapeix F, Bernabeu-Mora R, Llamazares-Herran E, Sanchez-Martinez MP, Garcia-Vidal JA, Escolar-Reina P. Interobserver Reliability of Peripheral Muscle Strength Tests and Short Physical Performance Battery in Patients With Chronic Obstructive Pulmonary Disease: A Prospective Observational Study. Arch Phys Med Rehabil. 2016 Nov;97(11):2002-2005. doi: 10.1016/j.apmr.2016.05.004. Epub 2016 May 30. — View Citation
Puente-Maestu L, Palange P, Casaburi R, Laveneziana P, Maltais F, Neder JA, O'Donnell DE, Onorati P, Porszasz J, Rabinovich R, Rossiter HB, Singh S, Troosters T, Ward S. Use of exercise testing in the evaluation of interventional efficacy: an official ERS statement. Eur Respir J. 2016 Feb;47(2):429-60. doi: 10.1183/13993003.00745-2015. Epub 2016 Jan 21. — View Citation
Raj IS, Bird SR, Westfold BA, Shield AJ. Effects of eccentrically biased versus conventional weight training in older adults. Med Sci Sports Exerc. 2012 Jun;44(6):1167-76. doi: 10.1249/MSS.0b013e3182442ecd. — View Citation
Roig M, Shadgan B, Reid WD. Eccentric exercise in patients with chronic health conditions: a systematic review. Physiother Can. 2008 Spring;60(2):146-60. doi: 10.3138/physio.60.2.146. Epub 2008 Oct 10. — View Citation
Spruit MA, Singh SJ, Garvey C, ZuWallack R, Nici L, Rochester C, Hill K, Holland AE, Lareau SC, Man WD, Pitta F, Sewell L, Raskin J, Bourbeau J, Crouch R, Franssen FM, Casaburi R, Vercoulen JH, Vogiatzis I, Gosselink R, Clini EM, Effing TW, Maltais F, van der Palen J, Troosters T, Janssen DJ, Collins E, Garcia-Aymerich J, Brooks D, Fahy BF, Puhan MA, Hoogendoorn M, Garrod R, Schols AM, Carlin B, Benzo R, Meek P, Morgan M, Rutten-van Molken MP, Ries AL, Make B, Goldstein RS, Dowson CA, Brozek JL, Donner CF, Wouters EF; ATS/ERS Task Force on Pulmonary Rehabilitation. An official American Thoracic Society/European Respiratory Society statement: key concepts and advances in pulmonary rehabilitation. Am J Respir Crit Care Med. 2013 Oct 15;188(8):e13-64. doi: 10.1164/rccm.201309-1634ST. Erratum In: Am J Respir Crit Care Med. 2014 Jun 15;189(12):1570. — View Citation
Tracy BL, Enoka RM. Older adults are less steady during submaximal isometric contractions with the knee extensor muscles. J Appl Physiol (1985). 2002 Mar;92(3):1004-12. doi: 10.1152/japplphysiol.00954.2001. — View Citation
* Note: There are 16 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Maximal muscle strength | Isometric peak torque of the quadriceps. | Change from baseline up to 4 weeks | |
Secondary | Six-minute walk distance | The distance that an individual can walk on an indoor 30-m flat corridor for a 6-min period. | Change from baseline up to 4 weeks | |
Secondary | Mobility function | The Short Physical Performance Battery (SPPB) is a test made by 3 components (standing balance, 4-m gait speed, and 5-repetitions sit-to-stand) measured by total time and kinematic parameters. | Change from baseline up to 4 weeks | |
Secondary | Muscle function | Measures of muscle accuracy and steadiness intended as the ability to control muscle force performing submaximal contractions during standardized tasks. | Change from baseline up to 4 weeks | |
Secondary | Body composition | Fat-free mass Index (FFM; calculated as the sum of lean mass and bone mineral mass) | Change from baseline up to 4 weeks | |
Secondary | Airways resistance | Measure of airway Resistance [Rrs (cmH2O/L/s)] | Change from baseline up to 4 weeks | |
Secondary | Airways reactance | Measure of airway Reactance [Xrs (cmH2O/L/s)] | Change from baseline up to 4 weeks |
Status | Clinical Trial | Phase | |
---|---|---|---|
Active, not recruiting |
NCT06000696 -
Healthy at Home Pilot
|
||
Active, not recruiting |
NCT03927820 -
A Pharmacist-Led Intervention to Increase Inhaler Access and Reduce Hospital Readmissions (PILLAR)
|
N/A | |
Completed |
NCT04043728 -
Addressing Psychological Risk Factors Underlying Smoking Persistence in COPD Patients: The Fresh Start Study
|
N/A | |
Completed |
NCT04105075 -
COPD in Obese Patients
|
||
Recruiting |
NCT05825261 -
Exploring Novel Biomarkers for Emphysema Detection
|
||
Active, not recruiting |
NCT04075331 -
Mepolizumab for COPD Hospital Eosinophilic Admissions Pragmatic Trial
|
Phase 2/Phase 3 | |
Terminated |
NCT03640260 -
Respiratory Regulation With Biofeedback in COPD
|
N/A | |
Recruiting |
NCT04872309 -
MUlti-nuclear MR Imaging Investigation of Respiratory Disease-associated CHanges in Lung Physiology
|
||
Recruiting |
NCT05145894 -
Differentiation of Asthma/COPD Exacerbation and Stable State Using Automated Lung Sound Analysis With LungPass Device
|
||
Withdrawn |
NCT04210050 -
Sleep Ventilation for Patients With Advanced Hypercapnic COPD
|
N/A | |
Terminated |
NCT03284203 -
Feasibility of At-Home Handheld Spirometry
|
N/A | |
Recruiting |
NCT06110403 -
Impact of Long-acting Bronchodilator- -Corticoid Inhaled Therapy on Ventilation, Lung Function and Breathlessness
|
Phase 1/Phase 2 | |
Active, not recruiting |
NCT06040424 -
Comparison of Ipratropium / Levosalbutamol Fixed Dose Combination and Ipratropium and Levosalbutamol Free Dose Combination in pMDI Form in Stable Chronic Obstructive Pulmonary Disease (COPD) Patients
|
Phase 3 | |
Recruiting |
NCT05865184 -
Evaluation of Home-based Sensor System to Detect Health Decompensation in Elderly Patients With History of CHF or COPD
|
||
Recruiting |
NCT04868357 -
Hypnosis for the Management of Anxiety and Breathlessness During a Pulmonary Rehabilitation Program
|
N/A | |
Completed |
NCT01892566 -
Using Mobile Health to Respond Early to Acute Exacerbations of COPD in HIV
|
N/A | |
Completed |
NCT04119856 -
Outgoing Lung Team - a Cross-sectorial Intervention in Patients With COPD
|
N/A | |
Completed |
NCT04485741 -
Strados System at Center of Excellence
|
||
Completed |
NCT03626519 -
Effects of Menthol on Dyspnoea in COPD Patients
|
N/A | |
Recruiting |
NCT04860375 -
Multidisciplinary Management of Severe COPD
|
N/A |