Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT04785469
Other study ID # Eccentric Training_COPD_FDG
Secondary ID
Status Completed
Phase N/A
First received
Last updated
Start date September 13, 2021
Est. completion date November 30, 2022

Study information

Verified date March 2022
Source Fondazione Don Carlo Gnocchi Onlus
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

Skeletal muscle dysfunction as a systemic consequence of chronic obstructive pulmonary disease (COPD) has a major impact on quality of life, health care resource utilization, and mortality of patients with this disease. In fact, a vicious circle of inactivity and disuse is established in the advanced stages of the disease, inducing a progressive decline in exercise tolerance and a loss of muscle mass (especially in locomotor muscles), resulting in the inability of patients to perform even the simplest daily activities. In this context, the multidisciplinary rehabilitation approach includes not only recovery of exercise capacity but also training aimed at restoring muscle function in patients with COPD. However, there is considerable methodological variability among muscle resistance training programs used in clinical practice with patients with COPD. This is compounded by the need to identify alternative training strategies effective in inducing functional adaptation in skeletal muscle without increasing the degree of dyspnea or fatigue in those symptomatic patients with advanced stages of disease. Among these, eccentric exercise or negative work, i.e. the stretching of the muscle during the active contraction phase, represents a valid alternative to traditional concentric training in various rehabilitation contexts. The main advantages of this training method are: 1) eccentric contraction is able to produce greater forces than isometric and concentric contraction; 2) for the same resistance, eccentric contraction has a lower metabolic cost than concentric contraction. For these reasons, eccentric exercise is a valid method of muscle strengthening in rehabilitation and in particular in those subjects unable to sustain a high cardiorespiratory effort, as in the case of patients with moderate-severe COPD. Previous studies have also shown that eccentric exercise, even at low load, produces results equivalent if not superior to traditional training with respect to some particular characteristics of muscle function such as power and hypertrophy. However, eccentric training programs for muscle dysfunction recovery in patients with COPD are underused in clinical practice, so far. In contrast, the so called iso-weight eccentric training, more suitable for clinical practice, could also be applied to rehabilitation programs designed for COPD patients. The aim of this study is therefore to evaluate the reliability and efficacy of a low-load eccentric exercise training program compared to usual care for the improvement of muscle function in patients with COPD.


Recruitment information / eligibility

Status Completed
Enrollment 30
Est. completion date November 30, 2022
Est. primary completion date November 30, 2022
Accepts healthy volunteers No
Gender All
Age group 40 Years to 85 Years
Eligibility Inclusion Criteria: - COPD diagnosis (GOLD stage: II-III-IV), defined as post-bronchodilator forced expiratory volume in 1s (FEV1)/forced vital capacity < 0.7 and FEV1 < 80% predicted. Exclusion Criteria: - Restrictive lung disease, unstable conditions, recent exacerbation, infection, embolism, pneumothorax, thoracic or abdominal surgery (less than 3 months before recruitment). - Cardiologic conditions like myocardial infarction (less than 6 months before recruitment), heart failure, or severe angina. - Inability of perform the exercise training (e.g. orthopaedic conditions). - Incapability to understand the instructions required to carry out the tests and assessments planned.

Study Design


Related Conditions & MeSH terms


Intervention

Other:
Low-load eccentric training
Aerobic exercise training on a downhill walking treadmill with the following settings: 10% negative incline and constant speed corresponding to 75% of the average speed recorded during the initial 6-Minute walk test. Resistance training: 5 minutes of warm-up on the manual ergometer, then 3 sets for 10 repetitions of the leg extension (performed unilaterally in eccentric phase) with a load of 75% of 1 repetition maximum (concentric) for the first two weeks. The following two weeks, 3 sets for 10 repetitions will be performed on the leg press (performed unilaterally in the eccentric phase) with 75% load of 1 repetition maximum (concentric). In addition, patients will perform 3 upper extremity strengthening exercises (free weights or elastic bands), including 2 sets of 10 repetitions for each exercise.
Usual care
Aerobic exercise training using the cycle ergometer at an intensity calculated as follows: 2 minutes with load equal to 20% of maximum load, then 25 minutes with initial load at 50% of maximum load calculated as 103.217 + (30.500xGender) + (-1.613xAge) + [0.002x6-Minute walk work (6MWW)]. [Sex: female = 0; male:1] [6MWW = 6-Minute walk distance x weight in kg]. Resistance training: 5 minutes of warm-up on the manual ergometer, then 5 exercises for upper and lower limbs performed with free weights or elastic bands. For the first 2 weeks will be performed 2 sets X 20 repetitions with 1 minute break between sets and a load that allows to perform no more than 20 repetitions. For the following 2 weeks, 3 sets of 10 repetitions x 10 repetitions with 2 min break between sets and a load that allows for no more than 10 repetitions.

Locations

Country Name City State
Italy IRCCS Fondazione Don Carlo Gnocchi Milan

Sponsors (1)

Lead Sponsor Collaborator
Fondazione Don Carlo Gnocchi Onlus

Country where clinical trial is conducted

Italy, 

References & Publications (16)

Barreiro E, Gea J. Respiratory and Limb Muscle Dysfunction in COPD. COPD. 2015 Aug;12(4):413-26. doi: 10.3109/15412555.2014.974737. — View Citation

Bourbeau J, De Sousa Sena R, Taivassalo T, Richard R, Jensen D, Baril J, Rocha Vieira DS, Perrault H. Eccentric versus conventional cycle training to improve muscle strength in advanced COPD: A randomized clinical trial. Respir Physiol Neurobiol. 2020 May;276:103414. doi: 10.1016/j.resp.2020.103414. Epub 2020 Feb 9. — View Citation

Dellaca RL, Santus P, Aliverti A, Stevenson N, Centanni S, Macklem PT, Pedotti A, Calverley PM. Detection of expiratory flow limitation in COPD using the forced oscillation technique. Eur Respir J. 2004 Feb;23(2):232-40. doi: 10.1183/09031936.04.00046804. — View Citation

Douglas J, Pearson S, Ross A, McGuigan M. Chronic Adaptations to Eccentric Training: A Systematic Review. Sports Med. 2017 May;47(5):917-941. doi: 10.1007/s40279-016-0628-4. — View Citation

Ellis R, Shields N, Lim K, Dodd KJ. Eccentric exercise in adults with cardiorespiratory disease: a systematic review. Clin Rehabil. 2015 Dec;29(12):1178-97. doi: 10.1177/0269215515574783. Epub 2015 Mar 10. — View Citation

Franchi MV, Maffiuletti NA. Distinct modalities of eccentric exercise: different recipes, not the same dish. J Appl Physiol (1985). 2019 Sep 1;127(3):881-883. doi: 10.1152/japplphysiol.00093.2019. Epub 2019 May 9. No abstract available. — View Citation

Franssen FM, Rutten EP, Groenen MT, Vanfleteren LE, Wouters EF, Spruit MA. New reference values for body composition by bioelectrical impedance analysis in the general population: results from the UK Biobank. J Am Med Dir Assoc. 2014 Jun;15(6):448.e1-6. doi: 10.1016/j.jamda.2014.03.012. Epub 2014 Apr 20. — View Citation

LaStayo P, Marcus R, Dibble L, Frajacomo F, Lindstedt S. Eccentric exercise in rehabilitation: safety, feasibility, and application. J Appl Physiol (1985). 2014 Jun 1;116(11):1426-34. doi: 10.1152/japplphysiol.00008.2013. Epub 2013 Jul 3. — View Citation

Luxton N, Alison JA, Wu J, Mackey MG. Relationship between field walking tests and incremental cycle ergometry in COPD. Respirology. 2008 Nov;13(6):856-62. doi: 10.1111/j.1440-1843.2008.01355.x. Erratum In: Respirology. 2013 Oct;18(7):1158. — View Citation

Maltais F, Decramer M, Casaburi R, Barreiro E, Burelle Y, Debigare R, Dekhuijzen PN, Franssen F, Gayan-Ramirez G, Gea J, Gosker HR, Gosselink R, Hayot M, Hussain SN, Janssens W, Polkey MI, Roca J, Saey D, Schols AM, Spruit MA, Steiner M, Taivassalo T, Troosters T, Vogiatzis I, Wagner PD; ATS/ERS Ad Hoc Committee on Limb Muscle Dysfunction in COPD. An official American Thoracic Society/European Respiratory Society statement: update on limb muscle dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2014 May 1;189(9):e15-62. doi: 10.1164/rccm.201402-0373ST. — View Citation

Medina-Mirapeix F, Bernabeu-Mora R, Llamazares-Herran E, Sanchez-Martinez MP, Garcia-Vidal JA, Escolar-Reina P. Interobserver Reliability of Peripheral Muscle Strength Tests and Short Physical Performance Battery in Patients With Chronic Obstructive Pulmonary Disease: A Prospective Observational Study. Arch Phys Med Rehabil. 2016 Nov;97(11):2002-2005. doi: 10.1016/j.apmr.2016.05.004. Epub 2016 May 30. — View Citation

Puente-Maestu L, Palange P, Casaburi R, Laveneziana P, Maltais F, Neder JA, O'Donnell DE, Onorati P, Porszasz J, Rabinovich R, Rossiter HB, Singh S, Troosters T, Ward S. Use of exercise testing in the evaluation of interventional efficacy: an official ERS statement. Eur Respir J. 2016 Feb;47(2):429-60. doi: 10.1183/13993003.00745-2015. Epub 2016 Jan 21. — View Citation

Raj IS, Bird SR, Westfold BA, Shield AJ. Effects of eccentrically biased versus conventional weight training in older adults. Med Sci Sports Exerc. 2012 Jun;44(6):1167-76. doi: 10.1249/MSS.0b013e3182442ecd. — View Citation

Roig M, Shadgan B, Reid WD. Eccentric exercise in patients with chronic health conditions: a systematic review. Physiother Can. 2008 Spring;60(2):146-60. doi: 10.3138/physio.60.2.146. Epub 2008 Oct 10. — View Citation

Spruit MA, Singh SJ, Garvey C, ZuWallack R, Nici L, Rochester C, Hill K, Holland AE, Lareau SC, Man WD, Pitta F, Sewell L, Raskin J, Bourbeau J, Crouch R, Franssen FM, Casaburi R, Vercoulen JH, Vogiatzis I, Gosselink R, Clini EM, Effing TW, Maltais F, van der Palen J, Troosters T, Janssen DJ, Collins E, Garcia-Aymerich J, Brooks D, Fahy BF, Puhan MA, Hoogendoorn M, Garrod R, Schols AM, Carlin B, Benzo R, Meek P, Morgan M, Rutten-van Molken MP, Ries AL, Make B, Goldstein RS, Dowson CA, Brozek JL, Donner CF, Wouters EF; ATS/ERS Task Force on Pulmonary Rehabilitation. An official American Thoracic Society/European Respiratory Society statement: key concepts and advances in pulmonary rehabilitation. Am J Respir Crit Care Med. 2013 Oct 15;188(8):e13-64. doi: 10.1164/rccm.201309-1634ST. Erratum In: Am J Respir Crit Care Med. 2014 Jun 15;189(12):1570. — View Citation

Tracy BL, Enoka RM. Older adults are less steady during submaximal isometric contractions with the knee extensor muscles. J Appl Physiol (1985). 2002 Mar;92(3):1004-12. doi: 10.1152/japplphysiol.00954.2001. — View Citation

* Note: There are 16 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Maximal muscle strength Isometric peak torque of the quadriceps. Change from baseline up to 4 weeks
Secondary Six-minute walk distance The distance that an individual can walk on an indoor 30-m flat corridor for a 6-min period. Change from baseline up to 4 weeks
Secondary Mobility function The Short Physical Performance Battery (SPPB) is a test made by 3 components (standing balance, 4-m gait speed, and 5-repetitions sit-to-stand) measured by total time and kinematic parameters. Change from baseline up to 4 weeks
Secondary Muscle function Measures of muscle accuracy and steadiness intended as the ability to control muscle force performing submaximal contractions during standardized tasks. Change from baseline up to 4 weeks
Secondary Body composition Fat-free mass Index (FFM; calculated as the sum of lean mass and bone mineral mass) Change from baseline up to 4 weeks
Secondary Airways resistance Measure of airway Resistance [Rrs (cmH2O/L/s)] Change from baseline up to 4 weeks
Secondary Airways reactance Measure of airway Reactance [Xrs (cmH2O/L/s)] Change from baseline up to 4 weeks
See also
  Status Clinical Trial Phase
Active, not recruiting NCT06000696 - Healthy at Home Pilot
Active, not recruiting NCT03927820 - A Pharmacist-Led Intervention to Increase Inhaler Access and Reduce Hospital Readmissions (PILLAR) N/A
Completed NCT04043728 - Addressing Psychological Risk Factors Underlying Smoking Persistence in COPD Patients: The Fresh Start Study N/A
Completed NCT04105075 - COPD in Obese Patients
Recruiting NCT05825261 - Exploring Novel Biomarkers for Emphysema Detection
Active, not recruiting NCT04075331 - Mepolizumab for COPD Hospital Eosinophilic Admissions Pragmatic Trial Phase 2/Phase 3
Terminated NCT03640260 - Respiratory Regulation With Biofeedback in COPD N/A
Recruiting NCT04872309 - MUlti-nuclear MR Imaging Investigation of Respiratory Disease-associated CHanges in Lung Physiology
Recruiting NCT05145894 - Differentiation of Asthma/COPD Exacerbation and Stable State Using Automated Lung Sound Analysis With LungPass Device
Withdrawn NCT04210050 - Sleep Ventilation for Patients With Advanced Hypercapnic COPD N/A
Terminated NCT03284203 - Feasibility of At-Home Handheld Spirometry N/A
Recruiting NCT06110403 - Impact of Long-acting Bronchodilator- -Corticoid Inhaled Therapy on Ventilation, Lung Function and Breathlessness Phase 1/Phase 2
Active, not recruiting NCT06040424 - Comparison of Ipratropium / Levosalbutamol Fixed Dose Combination and Ipratropium and Levosalbutamol Free Dose Combination in pMDI Form in Stable Chronic Obstructive Pulmonary Disease (COPD) Patients Phase 3
Recruiting NCT05865184 - Evaluation of Home-based Sensor System to Detect Health Decompensation in Elderly Patients With History of CHF or COPD
Recruiting NCT04868357 - Hypnosis for the Management of Anxiety and Breathlessness During a Pulmonary Rehabilitation Program N/A
Completed NCT01892566 - Using Mobile Health to Respond Early to Acute Exacerbations of COPD in HIV N/A
Completed NCT04119856 - Outgoing Lung Team - a Cross-sectorial Intervention in Patients With COPD N/A
Completed NCT04485741 - Strados System at Center of Excellence
Completed NCT03626519 - Effects of Menthol on Dyspnoea in COPD Patients N/A
Recruiting NCT04860375 - Multidisciplinary Management of Severe COPD N/A